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Abstract. Shaped by evolutionary processes, sensory systems often represent behaviorally relevant stimuli with
higher fidelity than other stimuli. The stimulus dependence of neural reliability could therefore provide an important
clue in a search for relevant sensory signals. We explore this relation and introduce a novel iterative algorithm that
allows one to find stimuli that are reliably represented by the sensory system under study. To assess the quality of
a neural representation, we use stimulus reconstruction methods. The algorithm starts with the presentation of an
initial stimulus (e.g. white noise). The evoked spike train is recorded and used to reconstruct the stimulus online.
Within a closed-loop setup, this reconstruction is then played back to the sensory system. Iterating this procedure,
the newly generated stimuli can be better and better reconstructed. We demonstrate the feasibility of this method by
applying it to auditory receptor neurons in locusts. Our data show that the optimal stimuli often exhibit pronounced
sub-threshold periods that are interrupted by short, yet intense pulses. Similar results are obtained for simple model
neurons and suggest that these stimuli are encoded with high reliability by a large class of neurons.
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1. Introduction

During the last decade, our understanding of the neu-
ral code has been significantly advanced by stimulus
reconstruction methods (Bialek et al., 1991; Gabbiani
et al., 1996; Theunissen et al., 1996; Stanley et al.,
1999; Machens et al., 2001). Within this framework,
one seeks to reconstruct a stimulus or some of its fea-
tures from the neural activity that it evokes. The success
of the method depends not only on a proper reconstruc-
tion algorithm but also on various stimulus character-
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istics such as bandwidth and variance (Wessel et al.,
1996). For instance, the reconstruction of natural stim-
uli or artificial stimuli tailored to the specific properties
of a sensory system often works better than the recon-
struction of more general stimuli such as white noise
(Rieke et al., 1995; Machens et al., 2001).

Here we seek to investigate the distinctive features of
stimuli that can be well reconstructed. For that purpose,
we use an algorithm that iteratively approaches such
stimuli during the course of an experiment. In each it-
eration we reconstruct a given stimulus online and play
the reconstruction back to the sensory system under
study. This procedure eliminates step by step any stim-
ulus features that cannot be well reconstructed. Hence,
we obtain a series of stimuli and spike trains that are
more and more robust against perturbations by inter-
nal neural noise sources. From an evolutionary point of
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view, such stimuli are likely to share statistical prop-
erties of behaviorally relevant sensory signals as those
are supposedly encoded more faithfully.

In particular, we are interested in three questions:
does the reconstruction series converge towards non-
trivial stimuli that can be reconstructed almost per-
fectly? What distinguishes the stimulus/spike-train
combinations that are most robust against noise? What
do these combinations tell us about the functional prop-
erties of the particular neuron under investigation?

The algorithm relies on the prior availability of a
successful reconstruction method. Here we test the pro-
cedure on auditory receptor neurons of locusts, a sys-
tem that has previously been demonstrated to be well
accessible to linear stimulus reconstruction methods
(Machens et al., 2001), and support our results with
numerical studies on integrate-and-fire model neurons.

2. Materials and Methods

2.1. Iterative Stimulus Reconstruction

Linear stimulus reconstruction methods (Bialek et al.,
1991; Rieke et al., 1997) provide a way to estimate
a stimulus from the evoked spike train. The recon-
structed stimulus can only contain stimulus features
encoded in the spike train. Aspects of the stimulus that
cannot be reconstructed include features that are not
encoded by the specific neuron, features that have been
lost due to various noise sources, and features that can-
not be reconstructed with linear methods. A search for
stimuli that can be reliably reconstructed could thus
start with a rather general stimulus and subsequently
eliminate all those parts that cannot be reconstructed.

Figure 1. The iterative reconstruction algorithm. The amplitude modulation s(t) of a sound pressure waveform w(t) is extracted by the sensory
biophysics. It is this amplitude modulation that we refer to as stimulus. The spike generation mechanism of the receptor neurons transforms s(t)
into a voltage signal V (t) which is recorded. The spike train y(t) is extracted online and used to reconstruct the original amplitude modulation.
This stimulus estimate sest(t) is re-normalized, filled with a carrier frequency and played back to the animal after which the procedure is iterated.

This might be achievable by the following iterative pro-
cedure (cf. Fig. 1):

(1) Start with an initial, general stimulus s1(t), e.g.
Gaussian white noise.

At the n-th iteration:

(2) Present stimulus sn(t) and record spike train yn(t).
(3) Compute an estimate sest

n (t) of the stimulus sn(t),

sest
n (t) = hn +

∫ T

0
dτkn(τ )yn(t − τ ) (1)

where the parameter hn and the kernel kn(τ ) are
chosen so as to minimize the mean-square differ-
ence 〈(sest

n (t) − sn(t))2〉 between stimulus and esti-
mate. The details of the kernel calculations are the
same as in Machens et al. (2001).

(4) Take this estimate as the new stimulus,

sn+1(t) = sest
n (t) (2)

and proceed with step (2).

One hopes that with each iteration the reconstruction
error, i.e., the mean-square difference between stim-
ulus and reconstruction, 〈(sest

n (t) − sn(t))2〉, becomes
smaller. Convergence might be called if the recon-
struction error drops below a threshold. A more rig-
orous criterion is described in the next section. Note
that there might exist stimuli that lead to “trivial” solu-
tions. In the absence of spontaneous activity, for in-
stance, a constant subthreshold stimulus s(t) = s0

will fail to elicit any spikes, i.e., y(t) = 0. In this
case, the parameter choice h = s0 and k(τ ) = 0
leads to a perfect fit of the stimulus. This is not
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a flaw of the algorithm: if the spontaneous activity of
the cell is sufficiently low, the “absence” of a stimulus
is encoded with high reliability, thus allowing perfect
reconstruction. Moreover, the absence of a stimulus
is certainly of biological relevance. Nevertheless, the
result is trivial in the sense that it does only provide
information about the sensory system that could also
have been inferred from the neuron’s stimulus-response
curve.

When starting with stimuli that do excite the neuron,
there is still the possibility of converging onto this triv-
ial solution: a non-perfect reconstruction always results
in a loss of stimulus variance; hence, the reconstruc-
tion algorithm will slowly reduce the stimulus power.
To avoid this spurious effect, we readjusted the variance
of the stimuli. This is done by modifying step (4):

(4a) Take the renormalized estimate as the new
stimulus,

sn+1(t) = σn

σ est
n

(
sest

n (t) − µest
n

) + µest
n (3)

where σn denotes the standard deviation of the
original stimulus sn(t) while σ est

n and µest
n denote

standard deviation and mean of the reconstructed
stimulus. Then proceed with step (2).

To measure the success of each reconstruction, we
used the normalized reconstruction error,

εn =
〈(

sest
n (t) − sn(t)

)2〉
〈(sn(t) − 〈sn(t)〉)2〉 . (4)

Hence, a reconstruction error of ε = 0% is equivalent
to a perfect reconstruction of the stimulus; a recon-
struction error of ε = 100% implies that no aspect of
the stimulus could be recovered from the spike train.

2.2. Convergence and Reliability

Technically, the algorithm can be described by an iter-
ative equation sn+1(·) = F[sn(·)], where the functional
F denotes the process of presenting the stimulus sn(t),
recording the response and reconstructing the stimulus.
Starting with an initial stimulus s1(t), we are searching
for a fixed-point solution to this equation which is given
if sn+1(t) ≡ sn(t). Whether such fixed points actually
exist is an empirical question, see also Section 2.4.

In the real world, neural systems are contaminated
with noise and the iterative equation becomes stochas-

tic. If we assume that the system under investigation is
stationary with finite memory, then the individual iter-
ations are fully described by a conditional probability
density p(sn+1(·) | sn(·)). Hence, the iterative algorithm
corresponds to a Markov process and a fixed point is
reached if the Markov process settles into a steady state.
If we assume that the initial stimulus is drawn from
a stationary density p(s1(·)), as is the case for white
noise, we can formulate the following necessary and
sufficient requirement for convergence:

(5) The iterative algorithm has converged if the stimuli
sn+1(t) and sn(t) have identical statistical proper-
ties.

Note that the reconstruction error does not reach zero
but instead levels out at a non-zero value that depends
on the width of the conditional densities. While conver-
gence of the stimulus statistics ensures convergence of
the reconstruction errors, the reverse is not true: even
if the reconstruction errors converge to a finite value,
the stimulus statistics might still change.

The convergence properties of the algorithm can be
demonstrated by simulations with standard integrate-
and-fire model neurons (Koch, 1999). Firing thresh-
old was set to 15 mV above the reset potential after
spike generation, and an RC-time constant of 10 msec
was chosen. Neural refractoriness was described by
an absolute refractory period of 3 msec, during which
spike generation was turned off. Internal noise sources
were incorporated by stochastically varying the firing
threshold according to a Gaussian probability distribu-
tion whose width is denoted as “internal noise level”.
For simplicity, the magnitude of external stimuli is al-
ways given as a voltage. In some simulations, the input
stimuli were convolved with a Gaussian filter with a
width of 2.5 msec.

To start the iterative reconstruction algorithm, we
chose an initial stimulus that was a white-noise cur-
rent injection with a cut-off frequency (500 Hz) well
beyond the inverse of the time constant of the model
neurons. After n = 100 iterations, the statistics of the
stimuli have converged and the final reconstruction er-
ror reflects the noise of the system as shown in Fig. 2a.

Strictly spoken, the assumption of stimulus station-
arity only applies for the limit of infinitely long stimuli.
For short stimuli, finite-size effects set in as shown in
Fig. 2b and c. Here the iterative algorithm was tested on
integrate-and-fire neurons using stimuli with different
length. As shown exemplary by the reconstruction er-
ror, skewness and curtosis of the stimuli after n = 100
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Figure 2. Convergence and reliability of the algorithm. Since neural systems are noisy, the reconstructed stimulus can never be a perfect copy
of the original stimulus. Accordingly, the iterative reconstruction procedure levels out at a finite reconstruction error. Using simulations with
integrate-and-fire model neurons, panel (a) demonstrates that this final reconstruction error depends on the amount of internal noise in the system.
Moreover, for noisy systems, the iterative algorithm cannot converge onto the same stimulus in two independent runs, even if the initial stimuli
are identical. It will however, converge onto stimuli that share the same statistical properties. This is also true if the initial stimuli are different but
share the same statistical properties. The reliability of this convergence is determined by the length of the stimuli. Panels (b) and (c) demonstrate
these observations using integrate-and-fire neurons. Panel (b) depicts the final reconstruction errors, panel (c) shows the higher-order statistics
(skew and curtosis) of the amplitude distribution of the final stimuli. In general, there might exist several solutions of the iterative reconstruction
algorithm with different overall properties. Panels (d) and (e) show for simulations with a Gaussian input filter (width 2.5 msec) that skew and
curtosis of the amplitude distribution of the final stimuli depend on the mean and variance of the initial stimuli. Here, “same” denotes a start
with identical stimuli, and “similar” a start with stimuli whose statistical properties are identical. Nevertheless, the final reconstruction errors
are similar and small, except for stimuli with very small variance (f). Similar results were obtained for simulations with other model parameters.

iterations, sufficiently long stimuli (T ≥ 10 sec at a
firing rate of at least 30 Hz) result in the same final
stimulus statistics with high reliability whereas shorter
stimuli produce far more scatter.

For the experiments on auditory receptor neurons,
we chose a stimulus length of T = 10 sec. For practical
reasons, we mostly terminated the iterative reconstruc-
tion algorithm after a fixed number of iterations. Some
experiments were allowed to run until the recorded neu-
rons were lost. Thus, it was possible to assess the con-
vergence of the algorithm and check how stable the
statistical properties of the stimuli became.

2.3. Choice of Initial Stimuli

Ideally, one would start the algorithm close to a steady-
state solution, i.e., with a stimulus whose statistics is

similar to that of the steady-state stimuli. In the absence
of any such knowledge about the system, we suggest to
start the iterations with a fairly “general” stimulus such
as white noise. Note that the algorithm cannot uncover
any stimulus features that are not included in the initial
stimulus s1(t). For instance, if the original stimulus has
a cut-off frequency of 50 Hz, then the final stimulus
cannot have any frequencies beyond 50 Hz. Hence, the
cut-off frequency of the white-noise stimulus should
be beyond the inverse of the shortest time constants of
the system.

For arbitrary systems, the iterative algorithm might
have many possible steady-state solutions. In this case,
the choice of the initial stimulus determines into which
steady state the iterative algorithm relaxes. For the sim-
ulated integrate-and-fire neurons, we investigated the
dependence of the final stimulus statistics on the initial
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stimulus statistics (see Fig. 2d and e). The data demon-
strate that the higher-order statistics of the final stimuli
depend non-trivially on the statistics of the initial stim-
ulus. This shows that the optimization landscape has
several local minima. As illustrated in Fig. 2f, most
of these minima have similarly small reconstruction
errors, only for small variance of the stimuli do the
reconstruction errors increase.

2.4. Limitations

The iterative reconstruction algorithm developed here
is a straightforward extension of linear reconstruction
methods. Hence, any limitation that apply to these
methods also apply to the new algorithm. For instance,
if the system encodes stimulus features that cannot
be reconstructed with linear methods, then the outcome
of the algorithm is essentially undefined. Hence, there
is no prior guarantee that the algorithm will converge
as described in point (5) in Section 2.2. Rather, conver-
gence can only be determined empirically.

2.5. Electrophysiology

All experiments were carried out in male and female
Locusta migratoria, with head, legs and wings cut off,
waxed dorsal side up on a temperature-controlled metal
platform. To minimize animal movement, the intestines
were removed. The frontal upper part of the thorax and
fat tissue covering the nervous system were removed
to allow for access to the auditory nerve from the dor-
sal side. The nerve was tethered with a special forceps.
Intracellular recordings were performed with standard
glass micro electrodes (filled with 1 M KCl solution,
impedance 50 to 100 M�) on a NPI BRAMP-01 ampli-
fier. The amplifier output was high-pass filtered and fed
to the analog inputs of a National Instruments MIO 16-
E1-PCI data acquisition board. The whole setup was
electrically and acoustically shielded as well as acous-
tically calibrated (1–40 kHz).

Auditory receptor neurons were identified by de-
termining their frequency sensitivity via a threshold
curve. This was measured by a binary search algorithm
(3 stimulus repetitions at each step) to find the low-
est response intensity for each frequency (1–40 kHz).
Recordings were stable up to 90 min.

The stimuli used were 10-second long, random am-
plitude modulations of a sine-wave carrier whose fre-
quency was given by the best frequency of the cell. The

average signal amplitude was set to a certain level above
the neuron’s measured response threshold at the best
frequency. The conversion rate for the signal output
was 250 kHz, attenuation of signals was done via a self-
built programmable analog attenuator. The laboratory
software used (OEL) generated the stimuli for each it-
eration, controlled the signal output via the analog out-
put ports of the utilized A/D board and the attenuator,
recorded the amplifier output voltage and other signals,
and automatically detected spikes in the recorded volt-
age trace by applying a threshold. The recorded spike
train was used to compute the reconstruction online as
described above. The reconstructed stimulus was then
played to the animal. Due to computing requirements,
there was a silent pause of approximately 1 second be-
tween iterations.

3. Results

3.1. A Sample Reconstruction Series

We tested the iterative reconstruction algorithm on lo-
cust auditory receptor neurons. A typical evolution of
stimuli and spike trains is shown in Fig. 3 for a sam-
ple reconstruction series. The initial stimulus consists
of Gaussian white-noise amplitude modulations of a
sine-wave carrier. The amplitude modulations have a
standard deviation of 7 dB, a mean intensity of 5 dB
above the cell’s threshold, and a cut-off frequency of
200 Hz, as can be seen by the initial stimulus spectrum,
cf. Fig. 3, top row, central panel.

The initial stimulus and the resulting spike train are
displayed in the top row, left panel, of Fig. 3. After com-
puting the reconstruction kernel (see inset), an estimate
of the original stimulus is obtained as described in the
section on materials and methods. The reconstructed
stimulus is then normalized and presented as the new
stimulus (see also Fig. 1). Although the reconstructed
stimulus deviates significantly from the original stim-
ulus (reconstruction error ε = 64%), the spike train
elicited by the reconstructed signal is almost exactly
the same as the spike train elicited by the original stim-
ulus, compare the upper two rows of Fig. 3. This result
is by no means trivial; instead it serves to show that
the reconstructed stimulus itself was a likely candidate
for eliciting the original spike train. The similarity of
the first two spike trains supports the general validity
of the stimulus reconstruction approach.

Remarkably, from each iteration to the next, the spike
trains change only slightly. In some cases spikes are
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Figure 3. A sample reconstruction series from auditory receptor neurons. Shown are (from top to bottom) the initial stimulus presentation, the
subsequent second, third, fifth, and tenth iterations, as well as the final, twentieth stimulus. For each row, the left panel illustrates the stimulus
s(t) together with the spike train it evoked, and (in the inset) the reconstruction kernel calculated from this stimulus and spike train. Directly
attached to the right is the distribution of modulation amplitudes. The central panel depicts the spectrum of the stimulus and the right panel
the distribution of interspike intervals. During the iterations, the stimulus loses high-frequency content and develops a strongly non-Gaussian
amplitude distribution, leading to long sub-threshold parts interrupted by brief sound pulses. The interspike-interval histogram develops a strong
peak around 2.5 ms, corresponding to a burst-like firing pattern. To resolve the full structure of the interspike-interval histograms, the first peak
is not drawn to scale. The relative fraction cut out of the peak is indicated by the percentage number.

shifted, usually for a fraction of a millisecond only.
At other instances spikes disappear or new ones are
inserted. In the long term, these small alterations elim-
inate spike patterns that are not stable to perturbations
by internal neural noise sources or that are less well re-
constructed than others. In particular, the most unstable
patterns will vanish within the first iterations; more sta-
ble patterns might exist for a longer time, while only the

most stable are likely to remain at all. As can be seen in
Fig. 3, it turns out that patterns of two or more spikes
are more stable than single spikes. When comparing
iteration #10 with iteration #20, for instance, one sees
that all double- and triple-spike patterns of iteration
#10 persist to #20, yet almost none of the single-spike
patterns does. Hence, after about 20 iterations, only
burst-like patterns remain.
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These long-term changes are reflected in corre-
sponding changes of the stimulus and spike-train statis-
tics. Initially, the stimulus is Gaussian distributed and
its power is shared evenly among all frequencies be-
tween 0–200 Hz (cf. Fig. 3, central panel, top row).
During the iterated stimulus reconstructions, the high
frequencies are slowly depleted, leaving the final stim-
ulus with frequencies between 0–100 Hz only. The am-
plitude distribution develops a strongly non-Gaussian
shape with a pronounced peak at lower, sub-threshold
intensities. Concurrently, the spike train changes from
an initially Poisson-like process into one that is domi-
nated by groups of spikes. This trend is clearly visible
in the interspike-interval distribution as shown in Fig. 3
on the right. An initially almost exponential distribu-
tion evolves into one with a high peak at 2.5 ms, corre-
sponding to burst-like firing, and fewer long interspike
intervals.

Figure 4 illustrates the development of the recon-
struction error as well as the average firing rate for
the sample reconstruction series. After a strong initial
drop, the reconstruction error decreases only slightly
from ε ∼ 20% (iteration #2) to ε ∼ 10% (iteration
#20). Hence, most of the reconstruction success can be
attributed to eliminating stimulus features not encoded
by the system (drop from ε = 64% to ε = 20% during
the first iteration), and only a comparably smaller gain
is achieved by eliminating stimulus features less robust
against noise (decrease from ε = 20% to ε = 10% dur-
ing 19 further iterations).

For this example, the firing rate is approximately
constant. This shows that the improved reconstructabil-
ity of the stimulus is not the result of an increase of the

Figure 4. Development of the reconstruction error and firing rate
for the experiment shown in Fig. 3. The largest decrease of the
reconstruction error occurred immediately after the first iteration;
subsequent iterations lead only to a slight further decrease. In this
experiment, the firing rate remained approximately constant.

average firing rate, but rather the consequence of a de-
crease in stimulus bandwidth and an increase of periods
where the stimulus is below threshold.

3.2. Population Data and Convergence Properties

Altogether 14 cells were recorded. In most experi-
ments, 20 iterations of the procedure were carried out;
longer sequences (up to 71 iterations) were used to eval-
uate the long-term convergence of the iterations. While
all initial stimuli had a cut-off frequency of 200 Hz, both
the mean above threshold and the overall variance were
varied to analyze the influence of the initial conditions
on convergence.

In all cases the reconstruction errors decrease sig-
nificantly. Pooled over all experiments with more than
ten iterations (n = 18), the reconstruction error of the
initial stimulus is ε = 62.0 ± 13.4% and of the last
stimulus ε = 9.4 ± 3.0%. In most experiments, the fir-
ing rate stays either relatively constant throughout the
iterations or decreases slightly. While initially there is
a strong correlation between high firing rates and low
reconstruction errors, the final reconstruction errors are
largely independent of the firing rate. In some exper-
iments, the reconstruction error did at times increase
between iterations (cf. also Fig. 4).

From the results presented up to now, one might
infer that after a sufficient number of iterations, a stim-
ulus/response pattern evolves that is unique and char-
acteristic for the neuron under study. However, this is
not the case. The types of stimuli that emerge rather de-
pend on the initial condition chosen. The final stimuli
fall into two main classes (Fig. 5a and b).

For initial conditions in which more than 25% of
the amplitude modulation values are below the cell’s
threshold (as in the example shown in Fig. 3), a stimulus
emerges in which the evoked spikes gather in groups
of three to five spikes with interspike intervals given
by the neuron’s refractory period (≈2.5 ms). The fi-
nal stimulus consists of many sub-threshold periods,
interrupted by brief yet strong pulses of highly uni-
form amplitude and shape (cf. Fig. 5a). Furthermore,
the stimulus spectra typically contain broad-band fre-
quencies in the range 0–100 Hz. Within this group, the
reconstruction error is ε = 9.7 ± 2.7%.

Initial stimuli with almost no amplitude modulation
values below threshold (<5%) lead in most cases to a
second type of final stimulus (Fig. 5b) which consists
of slow, regular waves in the amplitude modulation of
the stimuli, with a narrow-banded spectrum centered
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Figure 5. Final Stimuli. Shown are the stimulus and spike train of the final iteration for three exemplary experiments. Final stimuli consist
either of short bursts (a) or of oscillatory activity (b). Some of the experiments also end with stimuli as shown in (c); however, these are likely
to have not yet converged.

around 20–50 Hz. The resulting long-range correla-
tions of the stimulus are reflected in the oscillatory
lobes of the reconstruction kernel. The evoked spikes
occur in long groups with a frequency that depends on
the actual wave amplitude. The final reconstruction er-
rors are slightly lower (ε = 7.8 ± 3.9%) and can be as
low as ε = 2%.

In some of the experiments, the final stimuli be-
longed to none of these classes. These stimuli consist
of pulses of various amplitudes and duration that evoke
between one and five spikes each (Fig. 5c). Hence, in
contrast to the first stimulus type, these stimuli still
elicit many solitary spikes. Moreover, the stimuli re-
tain higher frequency components up to 160 Hz. How-
ever, careful inspection of the traces shows that similar
stimuli do appear frequently in intermediate stages of
all reconstruction series. Hence, we conclude that in
these experiments, the reconstruction series may not
yet have converged to one of the previous types. Note
that sometimes the changes from one stimulus to the
next were excessively small, thus requiring many more
than 20 iterations to converge.

3.3. Simulations with Integrate-and-Fire
Model Neurons

In a final step, the iterative reconstruction series was
tested numerically on several integrate-and-fire neu-

rons (see Fig. 2). In this case, the initial stimulus was
a 10-sec long current injection with a flat spectrum
from 0 to 500 Hz. The reconstruction series obtained
in these simulations have properties similar to those
found in the experimental data. In particular, the recon-
struction errors decrease on average, with the biggest
jump occuring between the first and second iteration.
Moreover, the final stimuli found in the simulations
were similar to the ones found for the auditory recep-
tor neurons: while the quantitative details, such as fi-
nal bandwidth, vary with the model parameters, the
prominent, almost binary switching between sub- and
supra-threshold stimuli (as witnessed in Fig. 5a) was a
common pattern. The reconstruction for the integrate-
and-fire neurons also showed a similar dependence on
the initial stimuli (Fig. 2d and e) as the auditory receptor
neurons.

4. Discussion

Previous online algorithms in neurophysiology have
sought to find stimuli that maximally drive a given
cell (Harth and Tzanakou, 1974; Nelken et al., 1994).
Here we have presented an alternative approach that
seeks stimuli that can be decoded with high fidelity.
Starting with a general white-noise stimulus, the it-
erative algorithm eliminates all stimulus features that
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cannot be reconstructed reliably. That includes stim-
ulus features not encoded by the particular neuron,
stimulus features that are encoded unreliably, and stim-
ulus features that a linear reconstruction algorithm
simply fails to decode although they have been en-
coded. Given our previous work on auditory receptor
neurons (Machens et al., 2001), we are confident that
the latter type of error can be neglected in the present
context.

Our results show that the algorithm is indeed ca-
pable of increasing the average reconstruction success
with each iteration. However, the lowest reconstruc-
tion errors found in the neurophysiological experiments
(down to ε = 2%) could only be observed for low-
bandwidth stimuli whose long-range correlations could
be exploited by the reconstruction method. More com-
plex stimuli with higher bandwidth did not evolve sig-
nificantly towards stimuli with errors below ε = 10%.
We conclude that this reflects a residual noise level that
cannot be overcome; hence, a perfect reconstruction of
“non-trivial” stimuli does not seem to be possible. This
conclusion is supported by our numerical studies on
integrate-and-fire neurons where we find a dependence
of the final reconstruction error on the neuron’s noise
level (Fig. 2a).

In agreement with earlier findings, our results in-
dicate that higher stimulus frequencies are only sta-
ble if the stimulus has a higher variance, leading to
larger fluctuations of the amplitude modulations. In
the process of the iterative reconstructions, these high-
variance stimuli develop long sub-threshold periods in-
terrupted by brief yet forceful sounds. The sound bursts,
in turn, result in small groups of rapidly fired spikes.
Although even single spikes show a remarkable per-
sistence against perturbations, these small groups of
spikes turn out to be the most stable patterns of neural
activity.

As most receptor neurons did not show significant
spontaneous activity, pauses can be reconstructed with
high reliability. One might therefore re-interpret the
neuron’s performance by saying that the neuron seeks
to optimize the duration of potential pauses under the
given constraints. Additionally, the spiking behavior
directly after the onset of a stimulus is highly reli-
able. This reliability extends over maximally five spikes
(around 12.5 ms) as larger groups of spikes occur only
rarely.

The similarity of the final stimuli for both the nu-
merical simulations and the auditory receptor neurons
suggest that these stimuli are well reconstructable for a

large class of neurons. Interestingly, grasshopper songs
have similar properties as they consist of a rapid suc-
cession of sound (called syllables) and pauses. Behav-
ioral experiments (Balakrishnan, 2001) have shown
that songs with pronounced syllable-pause structure
and strong accentuation of the syllable onset (lasting for
15 ms) trigger responses with high reliability. Indeed,
grasshopper songs can often be reconstructed with high
fidelity (Machens et al., 2001).

The method presented here could also be used as a
general exploratory tool to find the most effective elec-
trical stimuli for cells deep in a neural system. More-
over, the method will be helpful to test the performance
of stimulus reconstruction methods: if a major fraction
of information conveyed by the spike train is not em-
ployed by a reconstruction method, then the stimulus
will rapidly lose valuable features and degenerate into
a trivial solution.
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