
RELACS —
a modular software platform
for closed-loop experiments

Jan Benda
Department Biologie II
Ludwig-Maximilian
Universität München benda

Sensory electrophysiology

Electrosensory systems
of weakly eletric fish

Auditory system of
grasshopper and crickets

How are sensory stimuli processed
by sensory systems?

Closed-loop experiments with RELACS

1. Present a
stimulus

2. Record the
response

3. Immediately analyze and
visualize the data

4. Generate the next
stimulus

2

34

1

Stimulus
Input:

Input:
Neuronal response

Output:
Neuronal response

Output:
Next stimulus

Simple closed-loop experiments

• Online visualization of processed data:
– General infos, e.g. quality of spike detection,

sensitivity of the cell, temperature,
condition of animal, ...

– Specific results, e.g. spike raster, firing rates,
spike-triggered averages, ...

⇒ Speeds up manual (“traditional”) closed-loop

Simple closed-loop experiments

• Online visualization of processed data:
– General infos, e.g. quality of spike detection,

sensitivity of the cell, temperature,
condition of animal, ...

– Specific results, e.g. spike raster, firing rates,
spike-triggered averages, ...

⇒ Speeds up manual (“traditional”) closed-loop

• Set stimuli relative to the neuron’s dynamic range

• Automatically control motorized electrodes
(great for dual unit recordings!)

• Optimize tuning curve measurements

• ...

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=5
∆I=8

either:

fast→ low resolution

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=17
∆I=2

either:

fast→ low resolution

or:

high resolution→ slow

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=17
∆I=2

either:

fast→ low resolution

or:

high resolution→ slow

Closed loop:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=5
∆I=8

1. start with
low resolution

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=17
∆I=2

either:

fast→ low resolution

or:

high resolution→ slow

Closed loop:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=7
∆I=4

1. start with
low resolution

2. increase resolution
where necessary!

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=17
∆I=2

either:

fast→ low resolution

or:

high resolution→ slow

Closed loop:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=9
∆I=2

1. start with
low resolution

2. increase resolution
where necessary!

3. further increase
resolution

Example: tuning curve measurement

Traditional:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=17
∆I=2

either:

fast→ low resolution

or:

high resolution→ slow

Closed loop:

 0

 50

 100

 150

 200

 0 8 16 24 32

F
iri

ng
 r

at
e

[H
z]

Stimulus intensity

n=10
∆I=1

1. start with
low resolution

2. increase resolution
where necessary!

3. further increase
resolution

Advanced closed-loop experiments

New experimental designs are possible:

• Optimal search for a neuron’s receptive field.
• Search for stimuli that drive a neuron in an

”optimal” way.
• Find set’s of stimulus parameter that result in the

same response (iso-response method).
• ...

Benda et al. (2007): ”From response to stimulus: adaptive sampling

in sensory physiology.” Curr. Opin. Neurobiol. 17: 430–436.

Example: optimal stimulus ensembles

Machens et al. (2005) Neuron 17: 47–56.

RELACS ... enjoy your recordings

Relaxed Electrophysiological data Acquisition, Control, and Stimulation

RELACS is a framework for closed-loop experiments

⇒ currently 15 scientific publications based on
RELACS data in Neuron, J Neurosci, PLoS Biol,
Nat Neurosci, J Neurophysiol, etc.

RELACS research protocols

In RELACS the closed-loop cycle can be freely programmed
as a C++ plugin (“research protocol”).

The research-protocol plugins

• take recorded and pre-analyzed data
• perform analysis & display results
• generate next stimulus

2

34

1

Stimulus
Input:

Input:
Neuronal response

Output:
Neuronal response

Output:
Next stimulus

Dynamic clamp

Current-clamp, with the current I computed as a function
of the measured membrane potential V .

Closed-loop at a per sample time scale (tens of kHz).

Artificial conductances

I = g(t) ·(V −E)

Andrew A. Sharp, Michael B. ONeil, L. F. Abbott, & Eve Marder (1993) J Neurophysiol

• Synaptic conductances

• Voltage-gated conductances

Artificial networks

I1 = gsyn(V2) ·(V1−E) I2 = gsyn(V1) ·(V2−E)

Theoden I. Netoff, Matthew I. Banks, Alan D. Dorval, Corey D. Acker, Julie S. Haas,
Nancy Kopell, & John A. White (2005) J Neurophysiol

• Artificially couple real neurons

• Couple with simulated neurons

Precision-switch by leak conductance

DC=0 pA DC=85 pA

DC=0 pA
g=-4 nS

Dynamic clamp: leak current I = g(V −E), E := Vrest
DC=88 pA

g=+4 nS

100 msBoucsein, Ammer, Benda (2010) in preparation

Modular design

RELACS core with flexible C++ Plugins for

• hardware abstraction
• data pre-processsing (filter, spike detectors)
• research protocols
• passive controls
• model

Hardware independent protocols

RELACS integrates all hardware components.

Research protocols for RELACS

• are implemented independently of
specific hardware
• can be used on all the different experimental

setups in your lab without any modifications
• can be shared with other labs

Options for research protocols

Macros

... execute research protocols with specific parameter
settings:

$F IF ie ld s t a r t s e s s i o n
F I F i e l d
SysLatency
FICurve : du ra t i on =40ms; pause=260ms;
de tec to r Spikes−1: save

Research-protocol example
i n t Example : : main (void) {

double f requency = number (” f requency ”) ;
double dura t i on = number (” du ra t i on ” , ” s ”) ;
double ampl i tude = 0 . 0 ;
OutData s i g n a l ;
s i g n a l . setTrace (” Lef tSpeaker ”) ;
s i g n a l . sineWave (frequency , dura t ion , ampl i tude) ;
SampleDataD ra te (0 .0 , dura t ion , 0.001) ;
for (i n t counter =0; counter <20; counter++) {

w r i t e (s i g n a l) ;
s leep (du ra t i on + pause) ;
EventData spikes (events (” Spikes−1”) , s ignalTime () , s ignalTime () + du ra t i on) ;
double meanrate = spikes . ra te (0.3∗ dura t ion , du ra t i on) ;
sp ikes . addRate (ra te , counter , GaussKernel (sigma)) ;
P . lock () ;
P . c l ea r () ;
P . setXRange (0 .0 , du ra t i on) ;
P . p l o t (ra te , 1000.0 , P lo t : : Yellow , 2 , P lo t : : So l i d) ;
P . draw () ;
P . unlock () ;
i f (meanrate < t a r g e t r a t e) {

ampl i tude ∗= 2 . 0 ;
s i g n a l . sineWave (frequency , dura t ion , ampl i tude) ;

}
}
return Completed ;
}

C++ library for data analysis

Data structures (classes, container):

• Array — Basic 1-D vector

• SampleData — 1-D data vector with regularly sam-
pled time axis

• Map — Sequence of x|y data pairs

Algorithms:

• basic statistics (moments, quartiles, histogram)

• power spectra, coherence, transfer function

• linear fits

• non-linear fits (Simplex, Levenberg-Marquardt)

C++ library for data analysis

Data structures (classes, container):

• EventData — Spikes and other point process data

• EventList — Multi-trial spike trains

Algorithms:

• firing rates (mean, PSTH binned/kernel, 1/ISI)

• CV, Fano factor, ISI correlation

• vector strength, reliability, jitter

• mutual information (lower and upper bound)

Simulation mode

Research protocols also run on simulated data:

• test closed-loop algorithms

• directly compare models with experimental data

Meta-data: the data-chain

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Recording Data Management

Lab

Meta-data: the data-chain

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Recording Data Management

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Lab

Collaborator

German neuroinformatics node
www.g-node.de

Meta-data: the data-chain

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Recording Data Management

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Lab

Collaborator

World German neuroinformatics node
www.g-node.de

• All data transfer for analysis, mamagement, and
sharing requires talking about data.

Meta-data: the data-chain

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Recording Data Management

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Data Analysis

∫log 2 1+ S (f)
N (f))dfC=

)

Lab

Collaborator

World German neuroinformatics node
www.g-node.de

• All data transfer for analysis, mamagement, and
sharing requires talking about data.

• How to exchange metadata?

• How to record metadata?

The meta-data problem

Name-value (+unit) pairs for:
• Stimuli
• Experimental settings
• Cell, preparation, experimental subject
• Hardware properties
• Analysis parameter
• etc.

name value

Type

The meta-data problem

Name-value (+unit) pairs for:
• Stimuli
• Experimental settings
• Cell, preparation, experimental subject
• Hardware properties
• Analysis parameter
• etc.

But:
• What name to choose?
• What does it mean?
• How to share meta-data?

odML — a proposal

— open metadata markup language —

• simple key-value based, hierarchical structure:

author
date
version
repository

RootSection

name
type
definition
repository
mapping
link
include

Section

Property
name
definition
mapping
dependency
dependencyValue

Value
value
uncertainty
unit
type
definition
id
defaultFileName

Synonym
synonym

(0...n)
(1...n)

• all meta-data can be immediately stored
(e.g. no XML namespace extensions required)

• independent of data-base schemas

• standardization through terminologies

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml

odML terminologies

names & definitions

Hardware:

Amplifier:

name type description
Gain float The amplifier gain.

HighpassCutoff float The cutoff frequency of the
amplifier’s highpass filter.
Given in Hz.

LowpassCutoff float The cutoff frequency of the
amplifier’s lowpass filter.
Given in Hz.

Mode string The amplifier mode. E.g.
Bridge, CC, VC etc.

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml

How to use odML?

1. Assemble properties:
• If you find an appropriate property in the

odML-terminologies, use it!
• Ignore all properties that do not match.
• Add your own properties that are not yet in the

terminology, if possible with a description.

How to use odML?

1. Assemble properties:
• If you find an appropriate property in the

odML-terminologies, use it!
• Ignore all properties that do not match.
• Add your own properties that are not yet in the

terminology, if possible with a description.

2. Write them into an odML XML file

How to use odML?

1. Assemble properties:
• If you find an appropriate property in the

odML-terminologies, use it!
• Ignore all properties that do not match.
• Add your own properties that are not yet in the

terminology, if possible with a description.

2. Write them into an odML XML file

3. Transfer them to an analysis or database program

How to use odML?

1. Assemble properties:
• If you find an appropriate property in the

odML-terminologies, use it!
• Ignore all properties that do not match.
• Add your own properties that are not yet in the

terminology, if possible with a description.

2. Write them into an odML XML file

3. Transfer them to an analysis or database program

⇒ odML flexibility: all available metadata can be im-
mediately stored in a file

How to use odML?

1. Assemble properties:
• If you find an appropriate property in the

odML-terminologies, use it!
• Ignore all properties that do not match.
• Add your own properties that are not yet in the

terminology, if possible with a description.

2. Write them into an odML XML file

3. Transfer them to an analysis or database program

⇒ odML flexibility: all available metadata can be im-
mediately stored in a file

⇒ odML standard: The G-Node electrophysiology
database is based on odML: ww.g-node.org

How to record meta-data?

• Every online recording software knows
about most of the important meta-data!

How to record meta-data?

• Every online recording software knows
about most of the important meta-data!

⇒ All available Meta-data should be writ-
ten to a file directly from the recording
software, if possible using odML
terminologies.

How to record meta-data?

• Every online recording software knows
about most of the important meta-data!

⇒ All available Meta-data should be writ-
ten to a file directly from the recording
software, if possible using odML
terminologies.

• Such automated meta-data storage is
the basis for making public data bases,
such as www.g-node.org, work.

Meta-data acquisition by RELACS

Meta-data acquisition by RELACS

Meta-data acquisition by RELACS

RELACS records many meta-data:

• General infos about the experiment
(from the dialog)

• Main characteristics of the recorded cell

• All RELACS-controlled hardware settings
(e.g. sampling rate)

• All settings and version numbers of the
research protocols

• Properties of the stimuli

→ Closed-loop experiments
→ Dynamic clamp
→ Simulation mode

→ Hardware independent
→ Data analysis libraries
→ Meta-data storage

→ Open source, GPL, Linux
→∼ 160 000 lines of C++ code

by Jan Benda

