Closed-loop experiments and metadata management with *Relacs* and *LabLog*

Jan Benda & Jan Grewe

Department Biology II Ludwig-Maximilian University Munich, Germany

Content

Part I Closed-loop experiments: RELACS

Part II Data management: LabLog

Part III Metadata exchange

Part I —

Closed loop experiments with

 A set of stimuli and a more or less fixed experimental protocol are prepared

- A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations
 - ⇒ precious recording time is wasted

- A set of stimuli and a more or less fixed experimental protocol are prepared
- The recordings are done on a few cells (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations
 - \Rightarrow precious recording time is wasted
- 3. The data are analyzed offline

- A set of stimuli and a more or less fixed experimental protocol are prepared
- The recordings are done on a few cells (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations
 - \Rightarrow precious recording time is wasted
- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified

- A set of stimuli and a more or less fixed experimental protocol are prepared
- The recordings are done on a few cells (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations
 - \Rightarrow precious recording time is wasted
- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified
- 5. A new set of recordings is made

- A set of stimuli and a more or less fixed experimental protocol are prepared
- The recordings are done on a few cells (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations
 - \Rightarrow precious recording time is wasted
- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified
- 5. A new set of recordings is made
- 6. After several iterations a paper is written

relacs

Closed-Loop Experiments

- 1. Present a stimulus
- Record the response

- Immediately analyze and visualize the data
- Generate the next stimulus

relacs

Closed-Loop Experiments

RELACS is designed as a framework for closed-loop experiments that

- considerably speed up this traditional approach
- offer novel experimental possibilities

Simple Closed-Loop Experiments

- Online visualization of processed data:
 - General infos, e.g. quality of spike detection, sensitivity of the cell, temperature, condition of animal, ...
 - Specific results, e.g. spike raster, firing rates, spike-triggered averages, ...
 - ⇒ Speeds up manual closed-loop

Simple Closed-Loop Experiments

- Online visualization of processed data:
 - General infos, e.g. quality of spike detection, sensitivity of the cell, temperature, condition of animal, ...
 - Specific results, e.g. spike raster, firing rates, spike-triggered averages, ...
 - ⇒ Speeds up manual closed-loop
- Set stimuli relative to the neuron's dynamic range
- Automatically control motorized electrodes (great for dual unit recordings!)
- .

Traditional:

Traditional:

either:

 $\text{fast} \rightarrow \text{low resolution}$

either:

fast \rightarrow low resolution

or:

high resolution \rightarrow slow

either:

fast → low resolution

or:

high resolution → slow

Closed loop:

1. start with low resolution

either:

fast \rightarrow low resolution

or:

high resolution → slow

Closed loop:

- 1. start with low resolution
- 2. increase resolution where necessary!

relacs

Example 1: Tuning Curve Measurement

either:

fast → low resolution

or:

high resolution → slow

Closed loop:

- 1. start with low resolution
- 2. increase resolution where necessary!
- further increase resolution

Jan Benda

either:

fast → low resolution

or:

high resolution → slow

Closed loop:

- 1. start with low resolution
- 2. increase resolution where necessary!
- further increase resolution

Advanced Closed-Loop Experiments

New experimental designs are possible:

- Optimal search for a neuron's receptive field.
- Search for stimuli that drive a neuron in an "optimal" way.
- Find set's of stimulus parameter that result in the same response (iso-response method).
- ...

Benda et al. (2007): "From response to stimulus: adaptive sampling in sensory physiology." *Curr. Opin. Neurobiol.* **17**: 430–436.

⇒ currently 13 scientific publications based on OEL/RELACS data in Neuron, J Neurosci, PLoS Biol, Nat Neurosci, J Neurophysiol, etc.

Example 2: Optimal Stimulus Ensembles

Machens et al. (2005) Neuron 17: 47-56.

Example 3: Iso-Response

Gollisch et al. (2002) J Neurosci 22: 10434-10448.

... enjoy your recordings

Relaxed Electrophysiological data Acquisition, Control, and Stimulation

Modular Design

RELACS core with flexible C++ Plugins for

- hardware abstraction
- data pre-processing (filter, spike detectors)
- experimental protocols

Hardware Independent Protocols

RELACS integrates all hardware components.

Experimental protocols for RELACS

- are implemented independently of specific hardware
- can be used on all the different experimental setups in your lab without any modifications
- can be shared with other labs

RELACS records many metadata:

- All RELACS-controlled hardware settings (e.g. sampling rate)
- All settings and version numbers of the experimental protocols
- Properties of the stimuli used by the experimental protocols
- Main characteristics of the recorded cell
- General infos about the experiment (from a dialog)

T.

Metadata Acquisition with RELACS

Minimal manual input necessary!

How should the metadata be stored?

How should the metadata be stored?

Fileformat? Vocabulary?

Part II —

$\textbf{LabLog} = \textbf{the long-term memory of your lab} = \textbf{LabLog} = \textbf{$

LabLog - the Laboratory Logbook

- Storage of project related information:
 - Lab-journal (ideas, diary)
 - Experimental setup and hardware
 - Projects
- Management of acquired data:
 - Storage of metadata directly from RELACS
 - Search for data within/across projects (by SQL queries)
 - Export search results for further analysis
- Platform independent Java frontend to a mySQL database

Structure

The structure of the underlying relational database (about 60 tables):

driver registered connection established

Screen Shots

Metadata Management with LabLog

How should the metadata be imported into the database?

Part III — Talking about data

an Extensible Framework for Metadata Exchange

5 mV

Spike Threshold

The Contribution of Noise to Contrast Invariance of Orientation Tuning in Cat Visual Cortex Jeffrey S. Anderson, lieu Lamyl, Oxed C Gillespie, David Ferster'

Normalizado Potential a portuguida de la companya d

Orientation (degrees)

- All data transfer requires talking about data.
- How to exchange metadata?

- is "data about data".
- describe recording conditions.

stimulus.type = white noise

- is "data about data".
- describe recording conditions.

- is "data about data".
- describe recording conditions.

cell.baselineRate = 50 + /- 5 Hz

- is "data about data".
- describe recording conditions.

The Metadata Problem

- is "data about data".
- describe recording conditions.

- What name to choose?
- What does it mean?
- How to organize metadata?

Structure — How to organize metadata?

Property	name value error (optional) unit (optional) type (optional) description (optional)		
odML - metadata	Section 1	name description(optional) Property Property Section i	

Implemented as the odML XML Schema

The odML Schema

"normal" XML:

- A schema defines a fixed set of valid tags (names) and their relation
- Unknown properties invalidate the XML file
- The schema needs to be updated

The odML Schema

"normal" XML:

- A schema defines a fixed set of valid tags (names) and their relation
- Unknown properties invalidate the XML file
- The schema needs to be updated

"odd" XML — odML (open metadata markup language):

- The schema just defines the section and property structure (the grammar)
- Unknown properties do not invalidate the XML file
- The vocabulary (definition of properties) is inherently extensible

Definition — What name to choose?

- Sections group properties logically. E.g.:
 - Stimulus
 - Experiment description
 - Cell, experimental subject, preparation
 - Hardware properties, hardware settings
 - Dataset
 - Analysis parameter
 - etc.

Implementation: eVoc XML file conform to odML

Definition — Examples

HardwareSettings:

Amplifier:

name	type	description
Gain	float	The amplifier gain.
HighpassCutoff	float	The cutoff frequency of the amplifier's highpass filter. Given in Hz.
LowpassCutoff	float	The cutoff frequency of the amplifier's lowpass filter. Given in Hz.
Mode	string	The amplifier mode. E.g. Bridge, CC, VC etc.

Definition — Examples

HardwareSettings:

DataAcquisition:

name	type	description
AlUsedChannelCount	int	The number of used analog input channels.
AlSampleRate[n]	int	The sample rate with which an individual input channe was sampled. Given in Hz.
AlChannelGain[n]	float	The gain of an input channel.
AIReference[n]	string	The reference to which voltages were measured. Usually either "common ground" or "differential".
AlPolarity[n]	string	The polarity of the measurement "unipolar" or "bipolar".

Definition — **Examples**

Cell:

name	type description	
Name	string	An identifier of this cell.
Type	string	The type of the recorded cell.
BrainRegion	string	The Region the cells are located in. For example Retina, Cortex, Cerebellum etc.
BrainSubRegion	string	For example CA1 in hippocampus.
Layer	string	For example layer 4 in CA1.
Ganglion	string	Like the pro-, meta- and mesothoracal ganglion in invertebrates.
RecLocation	string	The recording location in the cell. Axonal, dendritic,somatic?
RestingPotential	float	What is the cell's resting potential. An indiator for the recording quality.
BaselineRate	float	For spiking cells, the spontaneous activity which might be an indicator for the cell's health status and thus recording quality.

How to use eVoc?

- 1. Assemble properties:
 - If you find an appropriate property in eVoc, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in eVoc, if possible with a description.

How to use eVoc?

- 1. Assemble properties:
 - If you find an appropriate property in eVoc, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in eVoc, if possible with a description.
 - 2. Write them into an odML XML file

How to use eVoc?

- 1. Assemble properties:
 - If you find an appropriate property in eVoc, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in eVoc, if possible with a description.
 - 2. Write them into an odML XML file
- 3. Transfer them to an analysis or database program

This is all done by *RELACS* and *LabLog* automatically!

Vision

- odML and eVoc are publicly available on the G-Node server.
 - Discussion forum for extensions to vocabulary and schema.
 - Recording, datamanagement, and analysis software should use eVoc for metadata exchange.
 - Data can be published on G-Node database which can also import this kind of metadata.

Vision

- odML and eVoc are publicly available on the G-Node server.
 - Discussion forum for extensions to vocabulary and schema.
 - Recording, datamanagement, and analysis software should use eVoc for metadata exchange.
- Data can be published on G-Node database which can also import this kind of metadata.
- ⇒ You can easily share your data!
- ⇒ Your data can be found!

The Data Life-Cycle

- Meta information tends to vanish with time.
- Thus, re-using of old data is a tedious business.
- Data should be annotated as early as possible (preferentially at the time of acquisition).

The Data Life-Cycle

- · Well annotated data can be found and reused easily
- ⇒ Your data deserves it!

Summary

- Closed-loop experiments may considerably speed up electrophysiological experiments and allow for new experimental designs.
- RELACS is a software platform for closed-loop experiments and automatically annotates your data (www.relacs.net).
- LabLog helps you keeping track of your data (lablog.sourceforge.net)
- A unifying framework for metadata exchange is needed for data sharing between data acquisition, analysis, and management software and services.

Experimental Protocol Example

```
int Example::main( void ) {
  // some initialization ...
  OutData signal:
  signal.setTrace( "LeftSpeaker" ):
  signal.sineWave( frequency, duration, amplitude ):
  SampleDataD rate ( 0.0. duration . 0.001 ):
  for ( int counter=0; counter<Repeats; counter++ ) {
    write ( signal ):
    sleep( duration + pause ):
    EventData spikes ( events ( SpikeEvents [0] ),
                      events( SpikeEvents[0] ).signalTime(),
                      events( SpikeEvents[0] ).signalTime() + duration );
   double meanrate = spikes.rate( 0.3*duration . duration ):
    spikes.addRate( rate , counter , GaussKernel( sigma ) );
   P. clear();
   P.plot (rate, 1000.0, Plot::Yellow, 2, Plot::Solid):
   P. draw();
    if ( meanrate < targetrate ) {</pre>
      amplitude *= 2.0;
      signal, sineWave( frequency, duration, amplitude );
```


Why C++

- well structured (object oriented)
- · platform independent
- efficient and controllable memory usage
- very fast

C++ Library for Data Analysis

Data structures (classes, container):

- Array Basic 1-D vector
- SampleData 1-D data vector with regularly sampled time axis
- Map Sequence of x|y data pairs

Algorithms:

- basic statistics (moments, quartiles, histogram)
- · power spectra, coherence, transfer function
- linear fits
- non-linear fits (Simplex, Levenberg-Marquardt)

C++ Library for Data Analysis

Data structures (classes, container):

- EventData Spikes and other point process data
- EventList Multi-trial spike trains

Algorithms:

- firing rates (mean, PSTH binned/kernel, 1/ISI)
- CV, Fano factor, ISI correlation
- · vector strength, reliability, jitter
- mutual information (lower and upper bound)

Free and Open Source Software

RELACS is open source and free software distributed under the GNU General Public License (GPL).

- No hassle with licenses of commercial software.
- Add whatever new feature you need directly to the program.
- Share the program and your specific experimental protocols with your collaborators.
- Know what the data-analysis algorithms are doing!