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Synchronous activity in populations of neurons potentially encodes
special stimulus features. Selective readout of either synchronous
or asynchronous activity allows formation of two streams of informa-
tion processing. Theoretical work predicts that such a synchrony
code is a fundamental feature of populations of spiking neurons
if they operate in specific noise and stimulus regimes. Here we
experimentally test the theoretical predictions by quantifying and
comparing neuronal response properties in tuberous and ampullary
electroreceptor afferents of the weakly electric fish Apteronotus lep-
torhynchus. These related systems show similar levels of syn-
chronous activity, but only in the more irregularly firing tuberous
afferents a synchrony code is established, whereas in the more reg-
ularly firing ampullary afferents it is not. The mere existence of syn-
chronous activity is thus not sufficient for a synchrony code. Single-
cell features such as the irregularity of spiking and the frequency-
dependence of the neuron’s transfer function determine whether syn-
chronous spikes possess a distinct meaning for the encoding of
time-dependent signals.

synchrony | oscillations | population code | electric fish | mutual infor-
mation

Neurons are the inherently noisy computing devices of the
brain. Repeated stimulation with identical stimuli evokes

similar but not identical neuronal responses [e.g. 1]. Noise
from internal and external sources induces substantial variabil-
ity in the number and the timing of fired action potentials [2].
Because of the strong non-linearity of the spiking threshold
neural noise can be beneficial by improving the representa-
tion of stimuli in populations of spiking neurons [3–7]. Noise
reduces the precision with which spikes lock to the stimulus
[1]. In populations of neurons that share a common input, for
example by having overlapping receptive fields, noise as well
as population heterogeneity have the advantage to decorrelate
the responses [8, 9]. That is, only those stimulus features that
drive the population strongest could synchronize the response
across neurons and thereby signal the presence of a particularly
important stimulus.

The role of synchronous activity in the cortex is widely
discussed [6, 10–12], e.g. as a possible solution for the binding
problem [for review see e.g. 13, 14], as a separate information
channel to relay visual information from thalamus to visual
cortex [15], as a mechanism for gain control in visual cortex
[16], or as a code for odor categories in zebrafish olfactory
bulb [17].

A synchrony code requires that asynchronously firing pop-
ulations are synchronized or, vice versa, synchronization is
escaped under certain conditions or by specific stimuli. In
weakly electric fish, changes in the level of synchronization

are considered an important cue for the detection of commu-
nication signals on the level of the receptor afferents [18–21]
and subsequent processing in hind- and midbrain neurons
[22, 23]. Middleton and colleagues [24] demonstrated that
reading out population activity of electrosensory neurons with
either integrators or coincidence detectors results in two dis-
tinct representations of sensory stimuli. Integrators encode
low stimulus frequencies, approximately matching frequencies
characteristic for prey detection and navigation. Coincidence
detectors discard low-frequency information and encode pre-
dominantly higher frequencies matching the ones of communi-
cation signals (for alternative mechanisms of such information
filtering, see [25]). In a theoretical study the conditions for
such a synchrony code have been analyzed in the limit of low
signal amplitudes and exemplified for leaky integrate-and-fire
neurons [26]. In particular, subtle effects of intrinsic noise on
the shape of peaks in the neuron’s response power spectrum
have been identified as an important parameter influencing a
potential synchrony code.

We experimentally investigate the role of noise in shaping a
synchrony code by comparing populations of two closely related
subsystems of the electrosensory system of the weakly electric
fish Apteronotus leptorhynchus. These animals employ an
actively generated electric field (the electric organ discharge,
EOD) to detect prey, navigate and communicate [e.g. 27–
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29]. The tuberous electroreceptors of the active system are
tuned to the frequency of their own field [30], and the most
prominent type of receptors afferents, the P-units, mainly
encode amplitude modulations of this carrier [31–33]. The
second system is the passive or ampullary system that is
most sensitive for low-frequency fields like those emitted by
muscle activity of e.g. prey organisms [e.g. 34, 35]. The
two electrosensory systems thus offer a unique opportunity
to analyze the information filtering in closely related but
sufficiently different populations of sensory neurons within the
same species.

Our results show that similar levels of synchrony can be
observed in both cell types while only the P-units of the
active system show a synchrony code consistent with the
theory. To understand this difference we describe and compare
characteristics of the spontaneous baseline activity as well as
the encoding of dynamic stimuli. The two systems, though
related, show distinct differences in various response features.
In particular, the level of response variability and the strength
of the resonance in the input-output correlation are much
higher in the active system. It is exactly the combination of
stronger noise in the P-units and a more pronounced peak in its
cross-spectrum with the stimulus that allows for a separation
of information channels, i.e. to establish a synchrony code.

Results

While the main type of electroreceptor afferents of the active
system, the P-units, have received much attention [e.g. 18, 31–
33, 36] the response characteristics of the ampullary afferents
of South American species of weakly electric fish have not
been described in comparable detail [but see 34, 37]. We thus
first compare the fundamental properties of the baseline and
stimulus-driven activity of both cell types, and then analyze
the impact of these differences on the information contained
in the synchronous activity of populations of such neurons.

Baseline activity Both types of afferents are spontaneously
active in the absence of an external stimulus. P-units show an
irregular baseline firing pattern while the baseline activity of
ampullary afferents appears much more regular (figure 1 A).
The response regularity can be quantified with the coefficient
of variation (CV = σT /T̄ ) of the interspike intervals T . A CV
of zero would indicate perfect regularity with all interspike
intervals being equal, random Poisson firing results in CV =
1. The baseline activity of the depicted P-unit has a broad
interspike interval histogram (figure 1 B, left) and a coefficient
of variation of 0.33 (average firing rate of 177Hz), indicating
the irregularity of the P-unit’s baseline activity. For the
regularly firing ampullary afferent, on the other hand, the
CV = 0.08 (average baseline firing rate of 130Hz) is indeed
close to zero matching the narrow distribution of the interspike
intervals (figure 1 B, right). Also, the power spectral density
(PSD) of the baseline activity of both cell types differs strongly.
The P-unit PSD (figure 1 C, left) has a peak at the baseline
firing rate (arrow). The most prominent peak, however, is at
the EOD frequency. This peak is a consequence of spike-time
locking to the self-generated electric field which is also the
reason for the multimodal structure of the P-unit interspike-
interval histogram. The EOD peak of the power spectrum is
symmetrically flanked by peaks resulting from the interaction
of the EOD peak and the baseline frequency. The ampullary
PSD (figure 1 C, right), on the other hand, is dominated by
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Fig. 1. Baseline activity of P-type and ampullary electroreceptor afferents. A
top: Intracellular recording of spontaneous activity of an P-type electroreceptor af-
ferent (P-unit, cell 2012-03-30-ah) in the absence of an external stimulus. bottom:
Spontaneous activity of an ampullary afferent (cell 2012-03-23-ad). Note that the
sub-threshold modulations of the membrane potential are a contamination of the
recording with the fish’s own EOD. B Interspike interval histograms of the example
cells shown above. C Power spectra of the baseline activity of the P-unit (left) and
ampullary afferent (right) shown above. Arrows indicate the baseline firing rates at
177 Hz and 133 Hz, respectively. While the power spectrum of the P-unit is dominated
by a peak at the EOD frequency (752 Hz), indicating tight locking of P-unit spikes to
the fish’s own field, a respective peak is absent in the power spectrum of the ampullary
afferent (EOD frequency of 907 Hz). The power spectrum of the ampullary baseline
activity, however, is dominated by the sharp peak at the firing rate. D Violin plots
depicting the distributions of observed firing rates across all recordings of P-units
and ampullary afferents (n = 57 and 25, respectively). Width of the violin indicates
density of the data points. Within the violin an abstraction of a box plot is shown,
where the white dot marks the median firing rate. E Distributions of the observed CVs
of the interspike intervals across cells. F Distributions of the width of psd peaks at the
firing rates observed in all cells.

peaks at the baseline firing rate and its harmonics. The strong
and narrow peaks are a consequence of the regularity of the
baseline firing. A peak at the fish’s EOD frequency is missing
since the ampullary afferents are not driven by the EOD.

Differences in population heterogeneity. On the population
level, across all cells recorded in this study, the baseline char-
acteristics discussed above vary to different degrees for P-units
(n = 57) and ampullary afferents (n = 25) (figure 1 D—F).

While the medians of the observed baseline firing rates
do not differ significantly (Mann-Whitney U-Test, p > 0.05),
the population heterogeneity is significantly larger in P-units
than in ampullary afferents (figure 1 D, p < 0.001 Levene
test centered on the median). P-unit firing rates are very
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heterogeneous, their firing rates vary from about 50 to more
than 450Hz (199 ± 104Hz, mean ± std), similar to previously
reported values [38]. Ampullary afferents, on the contrary, are
more homogeneous with firing rates ranging from 80 to 200Hz
(131 ± 29Hz, mean ± std).

The CV s of the interspike intervals of P-units are signifi-
cantly higher than the ones of ampullary afferents (p < 0.001,
Mann-Whitney U-Test), confirming their generally more ir-
regular firing pattern. In addition, the P-unit population is
also more heterogeneous regarding the irregularity of their
baseline activity. P-unit CV s range from 0.33 to 0.66 while
CV s of ampullary afferents are more homogeneous with values
ranging from 0.08 to 0.13 (figure 1 E, variances significantly
different, p < 0.001, Levene test centered on median).

Reduced irregularity of the baseline activity of ampullary
afferents is reflected in a smaller width of the first peak in
the PSD at the baseline firing rate (arrows in figure 1 C).
On the contrary, in P-units the peaks vary a lot and are on
average wider than in ampullary afferents because of their
more irregular firing pattern (figure 1 F, significant difference
in median p < 0.001, Mann-Whitney U-Test, Levene test
yields a p < 0.001 for the differences in variance).

Encoding of dynamic stimuli by ampullary and P-type electrorecep-
tor afferents. The responses to dynamic stimulation with
band-limited Gaussian white noise reflect the differences in
the baseline properties shown above. The cutoff frequencies of
the stimuli were adjusted to cover the full coding range of the
cells (300 and 150Hz for P-type and ampullary electroreceptor
afferents, respectively, figure 2 A, B).

The example P-unit shown in figure 2 A has a mean firing
rate of 147Hz and encodes the stimulus intensity with changes
of its firing rate around the mean firing rate. The time-
dependent firing rate was estimated by convolution with a
Gaussian kernel (σ = 2.5ms, Eq. (3)) and is referred to as
the peri-stimulus-time-histogram, PSTH, from here on. The
depth of the PSTH modulation is quantified by the response
modulation (Eq. (4), i.e. standard deviation of the PSTH over
time). In this particular recording the response modulation is
60Hz. The ampullary afferent shown in figure 2 B also follows
the temporal pattern of the stimulus by modulating its firing
rate around an average rate that is in the same range (127Hz).
The response modulation is weaker (35Hz) in this example
recording.

Different response modulations result from different stimu-
lus intensities, different sensitivities of the cells, and in par-
ticular from different positions and orientations of the cells
relative to the stimulus (supplementary figure S1). For the
following analysis and the comparison with predictions from
theory it is, however, only relevant how strongly a cell was
effectively driven by the stimulus. In the following we there-
fore use the response modulations as a proxy of the effective
stimulus intensity.

The properties of the baseline activity (figure 1) suggest that
P-unit responses are more variable than those of ampullary
afferents. The response variability (Eq. (5), i.e. standard
deviation of the PSTH over trials) illustrated as the shaded
band in the PSTH in the single-cell examples (figure 2 A, B)
suggests that the same mechanisms that cause high baseline
variability in P-units also affect the encoding of dynamic
stimuli. In the whole population of recorded cells the P-units
indeed show a higher response variability than the ampullary
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Fig. 2. Encoding of dynamic stimuli in electroreceptor afferents. A Responses
of an example P-unit (cell 2010-12-07-ad, selected for the similar average firing rate).
Cutoff frequency of the stimulus was at 300 Hz, its standard deviation was calibrated
to 10% of the EOD amplitude. In the rasterplot each dash marks the occurrence of a
spike in ten consecutive trials (rows). Superimposed on the spike raster is the average
PSTH (solid line) and its standard deviation (shaded area). The PSTH was estimated
by convolving the spike trains with a Gaussian kernel (σ = 2.5 ms). B Same as
panel A but of an ampullary electroreceptor afferent (cell 2012-03-23-ad, same as
in figure 1) to a band-limited white noise stimulus (top, cutoff at 150 Hz). Standard
deviation of the stimulus was calibrated to 5% of the EOD amplitude. C Distributions of
the response variability in P-type and ampullary electroreceptor afferents. Variability
was estimated as the time-averaged across-trial standard deviation of the PSTH
(Eq. (5)). P-units show a significantly higher degree of response variability than
ampullary afferents (p � 0.001, t-test). D Same data as in C but the response
variability is plotted as a function of the response modulation (i.e. the modulation of
the PSTH, Eq. (4), a proxy of the effective stimulus intensity) for P-type (dots) and
ampullary electroreceptor afferents (triangles). Correlation between the response
variability and the response modulation is estimated using Pearson’s r and given in
the legend. The response variability is uncorrelated with response modulation.

afferents (62±19Hz and 27±9Hz, mean ± standard deviation,
p � 0.001, t-test, figure 2 C).

For both cell types response variability is independent of re-
sponse modulation, i.e. effective stimulus intensity (figure 2 D,
Pearson’s r = −0.01 (p = 0.88) and r = −0.02 (p = 0.87), for
P-type and ampullary electroreceptor afferents, respectively).
There is very little overlap of the distributions of response
variabilities even for ranges of the response modulation that
is covered by both cell types (below approximately 150Hz).

Thus far we have described two populations of sensory
afferents within the same sensory system in the same species
that exhibit distinct differences in their response variability.
In the following paragraphs we analyze how these differences
affect the efficiency of a synchrony code for both populations.

Synchrony code. First, the synchrony code of P-units [24] is
reviewed in light of theoretical predictions [26], in particular its
dependence on stimulus amplitude. Further, the comparison

Grewe et al. PNAS | January 13, 2017 | vol. XXX | no. XX | 3
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Fig. 3. Stimulus-response coherence for synchronous responses versus all-
spike responses in dependence on response amplitude. A Calculation of the
synchronous response. Spike trains of pairs of responses were combined by replacing
spike events (solid vertical lines) with Gaussian kernels (gray shaded). The responses
were then multiplied to yield the synchronous response. Kernels with standard
deviations of σ ∈ {0.5, 1.0, 2.0}ms were used. For illustrative purposes kernels are
scaled to their maximum in the figure. See methods for details and Eq. (1) and Eq. (7)
for normalization of kernels. B Coherence spectra of P-unit responses computed from
all-spike response (solid line) and synchronous response (dashed lines) using three
different window sizes defining synchrony for the multiplication method as indicated.
Plotted are average coherences± standard deviation for the three categories weak,
medium and strong response modulations (compare supplementary figure S1). Note
the elimination of low-frequency coding of synchronous spikes for weak stimuli. C
Same as B but for responses of ampullary afferents.

to the ampullary afferents with their less variable spike activity
allows to assess the impact of noise and other cellular properties
on the efficiency or the existence of a synchrony code. The
stimulus response coherence (Eq. (8), methods) is used to
quantify how well the stimulus is represented in the responses.
The coherence is a spectral measure that quantifies the (linear)
correlation between stimulus and response in a frequency
resolved way. A coherence of 1 indicates a perfect linear
correlation. If there is no such linear correlation, the coherence
assumes values close to zero.

The way how pre-synaptic spike activity is read-out po-
tentially affects the stimulus-response coherence. Integrating
all spikes (all-spike responses) yields a stronger representa-
tion of low-frequency information while selectively reading
out synchronous spikes (synchronous responses) shifts the
best frequency, the position of the coherence peak, to higher
frequencies and discards low-frequency information [24].

Previous studies used a “binning method” to estimate the
synchronous responses (supplementary figure S2 A). Here,
synchronous responses were computed by a convolution of
the individual spike trains with Gaussian kernels of different
widths and subsequent multiplication of the responses [26]
(figure 3 A).

Synchrony code in P-units is strongest for weak stimuli. For weak
response modulations the shape of the stimulus-response coher-
ences of synchronous responses qualitatively differs from the
ones of all-spike responses in P-units (figure 3 B, left panel).
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Fig. 4. Properties of synchrony codes. Scatter plots compare properties of the
coherence of synchronous spikes between ampullary (triangles) and P-type electrore-
ceptor afferents (dots) as a function of response modulation, i.e. effective stimulus
intensity. As a synchrony criterion a window of 1 ms width was used. Legend indicates
corresponding Pearson’s correlation coefficient and significance of the correlation.
Circles mark the example cells shown in figure 5. A Position of the peak of the
coherence of synchronous spikes. B Same data as in A, but the peak position of
the coherence spectrum was normalized to the baseline rate of the respective cell.
C The firing rate of synchronous spikes relative to the average firing rate during
stimulation. Dashed lines are linear regressions for the two types of electroreceptor
afferents. D Mutual information between stimulus and synchronous spikes relative to
the mutual information of all-spikes responses. A lower bound of mutual information
was estimated from the coherence spectra according to Eq. (10) in the frequency
range from 0 to 150 Hz.

Confirming previous results [24] low-frequency information
is suppressed in synchronous spikes, leading to a shift of the
peak of the coherence to higher frequencies — a synchrony
code is established.

However, for stronger responses, i.e. higher response modu-
lations, the coherence of synchronous responses becomes more
and more similar to the coherence of all-spike responses (fig-
ure 3 B, middle and right panel). The peak of the coherence of
synchronous responses shifts to lower frequencies — the syn-
chrony code vanishes, as predicted by Sharafi and coworkers
[26]. This is supported by a negative correlation between the
position of the coherence peak and the response modulation
(figure 4 A, dots). In each category of response modulations
we observe that the width of the synchrony window (see meth-
ods), i.e. the strictness of the synchrony detector, affects the
amplitude of the coherence spectra. The coherence amplitude
is reduced with smaller synchrony windows. At medium and
especially at weak response modulations a stronger shifting ef-
fect can be observed with smaller synchrony windows (figure 3
B).

Theoretical work predicts that the peak of the synchronous
response coherence should shift towards the baseline firing
frequency in the limit of weak stimuli [26]. Normalizing the
peak position of the coherence to the baseline firing rate shows
that in P-units the coherence peak indeed moves towards base-
line firing rate for weak response modulations, in accordance
with the expectation (note the strong negative correlation be-
tween normalized position of coherence peak and the response
modulation, figure 4 B, dots).

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Grewe et al.
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No synchrony code in ampullary afferents despite similar syn-
chronous activity. In ampullary electroreceptor afferents the
position of the peak of the synchronous response coherence is
only slightly shifted to higher frequencies in comparison to the
all-spike response coherence (figure 4 A, triangles). This shift
does not depend on response modulation and peak positions
are far from the baseline firing rate (figure 4 B). No synchrony
code is established in ampullary afferents. In contrast to what
is observed in P-units, increasing the temporal precision of
the synchrony estimation scales the coherence functions down,
but does not affect the position of the peak.

This absence of a synchrony code cannot be explained by
differences in the firing rates of the synchronous responses.
For low response modulations, where we expect P-units to
show a synchrony code, the fraction of synchronous spikes is
exactly the same for P-units and ampullary afferents (figure 4
C).

Although ampullary responses compared to P-unit re-
sponses have the same amount of synchronous spikes, syn-
chronous spikes in ampullary afferents do not carry specific
information.

Synchronous response in ampullary afferents carries less informa-
tion. Extracting the synchronous spikes from ampullary re-
sponses leads to a more pronounced drop in stimulus-response
coherence than observed for P-units (figure 3). Accordingly,
the amount of information contained in the synchronous re-
sponses is much more reduced in ampullary than in P-type
electroreceptor afferents (lower-bound estimation of the mu-
tual information according to Eq. (10)). Synchronous spikes
of ampullary afferents contain only 12% (median, 9% and 19%
lower and upper quartile) of the information contained in the
all-spikes response. On the other hand, synchronous responses
of P-units carry a significantly larger proportion (median 73%,
58% and 86% lower and upper quartile, p � 0.001, Mann-
Whitney U test) of the all-spikes information (figure 4 D),
despite similar fractions of synchronous spikes (figure 4 C).
In both cell types there is a positive correlation between the
relative mutual information and the response modulation. The
stronger the cell is driven, the less pronounced is the atten-
uation of the low-frequency coherence (figure 3 B, C, right
panels) and the coherence peak is less shifted (figure 4 B).
Thus, the spectra become more similar and hence synchronous
and all-spike responses carry increasingly similar information.

The results shown above are based on the comparison of
pairs of responses but are also valid for larger populations in
which spikes in m-out-of-n trials have to be synchronous [39]
(supplementary figure S3).

Discussion

We experimentally reproduced the previously described infor-
mation filtering of synchrony detection in P-type electrore-
ceptor afferents [24] and analyzed the preconditions of such a
synchrony code in more detail. In particular, we verified the
predicted dependence of a synchrony code on effective stimulus
amplitude [26] and studied the influence of cellular properties,
such as neural response variability, on synchrony codes by
comparing our findings on P-units to a related population of
sensory interneurons, the ampullary afferents which exhibit
less variable responses. Although they have the same fraction
of synchronous spikes as the P-units, the synchronous spikes
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Fig. 5. Comparison of response spectra of P-type and ampullary afferents. A–
C Cross-, power and coherence spectra of an example P-unit (2012-03-23-ae). In
each panel the respective spectra of the single-trials (solid lines) and the synchronous
responses (broken lines) at two different stimulus intensities (contrast, see methods)
are depicted. All spectra were calculated from response segments of 8192 points
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150 Hz for easier comparison of the shape. Second frequency axis on top is scaled
according to the baseline firing rate. D–F Same analysis for an example ampullary
afferent (2012-03-23-ad). Cells were selected to allow for a comparison at the same
two stimulus intensities.

in ampullary afferents do not encode different aspects of the
stimulus in comparison to the information carried by all spikes.

Why P-units allow for a synchrony code and ampullary afferents do
not. The differential effect of synchrony detection in P-units
and ampullary afferents can be qualitatively understood by
comparing the relevant spectra. The stimulus-response co-
herence (Eq. (8)) is essentially determined by the ratio of
squared stimulus-response cross-spectrum and response power
spectrum (the white stimulus does not contribute to the fre-
quency dependence of the coherence). For two sample cells
stimulated at two different levels (2.5 and 5% contrast, lighter
and darker lines, respectively) we show the respective spectra
for the single spike train (solid line, qualitatively similar to the
all-spikes statistics shown above) and the synchronous output
(dashed lines) in figure 5.

The cross spectra (figure 5 A, D) relate stimulus and re-
sponse and, because of the white spectrum of the stimulus,
are proportional to the transfer function. As expected from
theory [26], the cross-spectra are similar for the synchronous
response and the single trial response (dashed and solid lines
in figure 5 A, D agree apart from a scaling factor). In P-units
they reveal a broad but pronounced peak at a frequency that
is about 60% of the firing rate. This is typical for a leaky
integrator cell in a mean-driven mode that is subject to a
moderate amount of intrinsic noise [40, 41]. The ampullary
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afferent on the contrary has a small peak (for small stimulus
intensity) or no peak at all (for the larger stimulus intensity) —
the latter behavior can be expected for a perfectly integrating
cell [3, 41]. The form of the small and narrow peak, however,
suggests that this cell is subject to less intrinsic noise than the
P-unit, which is in line with the baseline activity discussed
above. The differences in the cross-spectra of P-units and
ampullary afferents are a consequence of the level of intrinsic
noise and the leakiness of the respective cell.

Turning to the power spectra, we first note that the spectra
of the synchronous spikes (dashed) differ from those of the
single trials (solid). The synchronous spikes can be approxi-
mated by multiplying the single spike trains (supplementary
figure S2). According to the convolution theorem this multi-
plication translates into a convolution of the single-trial power
spectrum (including its DC peak) with itself. Such a con-
volution flattens the power spectrum, especially, when the
original spectrum has a sufficiently broad peak [26]. Since the
single spike train power spectrum of the ampullary afferent is
narrowly peaked (in particular for the lower stimulus level),
this flattening is not pronounced. In contrast, the synchronous
power spectrum of the P-unit exhibits a rather flat shape
because of the comparatively broad peak in the single spike
train spectrum.

Dividing a peaked function (the squared stimulus-synchrony
cross-spectrum of P-units) by a flat function (the synchronous
output power spectrum of P-units), yields a likewise peaked
function. If the power spectrum is flat, the coherence simply
inherits the peak from the squared cross-spectrum. Depending
on the specific level of intrinsic noise and on other biophysical
parameters of the neuron, the cross-spectrum peaks in a range
of 40-110% of the firing rate, which corresponds to the range
of coherence peak frequencies observed in figure 4B. For the
ampullary afferent the same mechanism cannot work because
there is (i) not a pronounce peak in the cross-spectrum in the
first place, (ii) the convolved spectrum (i.e. the synchrony
spectrum) is predominantly increased at low frequencies, where
the single spike-train power spectrum is exceptionally small.
The latter effect leads to a strong overall reduction of synchrony
coherence at low frequencies compared to the single spike train
coherence (cf. the strong drop from solid to dashed lines in
figure 5F) and can thus explain the strong reduction of the
information rate (figure 4D, red symbols).

We have tested whether a similar behavior can be found in
leaky integrate-and-fire (LIF) models. By adapting the level
of intrinsic noise and the value of an effective leak parameter,
we were able to qualitatively reproduce the spectral features
seen in the real cells (compare figures 5 and supplementary
figure S4). In this picture, the P-unit corresponds to an IF
neuron with stronger leak current and higher noise level than
the ampullary afferent.

These results suggest that the biophysical properties of the
respective cell (leak current, channel noise) might be matched
to its biological function for encoding specific aspects of time-
dependent sensory signals. Ampullary afferents encode low-
frequency components of a stimulus in an excellent manner,
however, their synchronous spikes do neither encode very much
nor do they show a very different frequency preference than the
summed output. This suggests that stimulus-driven synchrony
is not used in ampullary afferents. For P-units the encoding
performance of the summed activity of pairs of neurons is less

impressive in magnitude but extends over a larger frequency
band. Moreover, the higher intrinsic noise level (responsible
for the lower overall coherence) permits the P-units to use two
codes and to encode stimulus components of different frequency
bands in the summed activity and in the synchronous spikes,
respectively. These effects are strongest in a regime of weak
stimuli.
Behavioral relevance of the weak stimulus regime. Behavioral ob-
servations of communication scenes in weakly electric fish of a
closely related species Apteronotus rostratus in the field show
that electric fish communicate at the limits of sensation [42]:
(i) In aggression contexts rivals are assessed and attacks are
initiated at animal distances of up to more than 1m. At
such distances the electric field intensities are extremely low
(0.1 µV) and therefore electroreceptor stimulation is weak. (ii)
In courtship contexts the spatial distances between communi-
cation partners are low and the signals strong but a mismatch
between the signal frequencies and the electroreceptor tuning
again leads to weak activation of P-type afferents [20, 42, 43].
(iii) During foraging prey items like the crustacea Daphnia are
detected by electric signals created through muscle activity
(stimulating the ampullary afferents) and the amplitude mod-
ulations induced by their resistive properties (stimulating the
P-units) which are in the 0.2–1 µV range [44–47]. The weak
stimulus regime where a synchrony code is distinct from a
simple population code can thus be considered a behaviorally
relevant regime in which communication and prey signals need
to be encoded and separated from other signals.
Readout of electrosensory information in the weakly electric fish.
Electroreceptor afferents project to the electrosensory lateral
line lobe (ELL) in the hindbrain of the fish. The P-units
trifurcate and synapse onto postsynaptic cells in three somato-
topically organized maps, the so called lateral, centro-lateral,
and centro-medial segments (LS, CLS, and CMS, respectively,
48–51). The target cells in the ELL are the pyramidal neurons
which constitute an information bottleneck since all electrosen-
sory information passes this stage. The coding properties of
these neurons are well investigated [e.g. 8, 52–56]. Across
maps the spectral tuning changes from low-pass behavior in
the CMS to high-pass behavior in the LS [52, 55, 56]. In the
context of a synchrony code this suggests that LS pyramidal
cells might read out synchronous spikes only and CMS pyra-
midal cells integrate all their input spikes [24]. Read out of
synchronous spikes could be achieved by coincidence detec-
tion where the summed postsynaptic potentials (PSP) need
to cross a threshold higher than a single PSP [57]. This would
lead to much lower firing rates in synchrony detectors if they
would integrate the same number of inputs as a pyramidal
cell with lower firing threshold that encodes the information
contained in all input spikes [24]. In fact, cells in the CMS
integrate over a few tens of electroreceptor afferents only, they
have small receptive fields, and have low thresholds. On the
other extreme, LS pyramidal neurons integrate over about 30
times more afferents, they receive input from large receptive
fields, and have higher thresholds [51, 58]. These evidences
suggest that the processing of electrosensory information in
the active subsystem is split up into several processing streams,
based on reading out different levels of synchrony in the P-unit
population, thereby exploiting the specific information carried
by synchronous spikes.

The ampullary afferents of the passive system project onto
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a single map only, the medial segment (MS) of the ELL [48].
Little is known about the internal structure and the coding
properties of the pyramidal cells in the MS of A. leptorhynchus
[for Eigenmannia see 37]. Like the maps of the active system,
the MS shows a somatotopic arrangement, rendering it unlikely
that there are sub-populations of pyramidal cells that show
distinct differences regarding their frequency tuning. This
would match our finding that ampullary responses do not
allow the extraction of distinct information from synchronous
spikes.
High- and low-noise afferents in the vestibular system. Two
anatomically distinct firing sub-populations of vestibular affer-
ents in primates show characteristics that qualitatively match
the properties of ampullary and P-type electroreceptor af-
ferents. Both sub-populations show a spontaneous baseline
activity that is very regular in the one and irregular in the
other sub-population. It has been concluded that the regularly
firing afferents encode self-motion using a time-code while the
irregularly firing afferents employ a rate-code [59]. We suggest
that the high irregularity allows for a combined rate and time-
code when synchronous events in populations of afferents are
taken into account.
Oscillations, noise, and synchrony. Regular neuronal firing
with precise locking of spike times to a driving oscillation
is observed in various systems, for example, locking to pure
tones in the auditory system [60, 61], internal oscillations in
electroreceptors [62] or cold receptors [63]. If the periodic
drive results from internal oscillations the coding performance
at this frequency is reduced [3]. Accordingly, the ampullary
afferents of the paddlefish show a dip in the stimulus-response
coherence at this frequency [62].

The ampullary afferents recorded here have a very regular
baseline firing generated by a limit-cycle oscillation (figure 1).
Thus the power spectrum of the response to white-noise stim-
uli shows a strong peak at the baseline firing rate, if the
system is driven in the weak-stimulus regime (figure 5 E).
Ampullary receptor afferents need to encode low-amplitude
and low-frequency signals of prey items as reliable as possi-
ble [46, 62, 64, 65]. Accordingly, across species, ampullary
afferents show a clear tuning to low stimulus frequencies [e.g.
35, 62, 66–68] (figure 3 C). Because there is no need to en-
code stimulus frequencies beyond the firing rate, a reduced
intrinsic noise level and thus a minimum response variability
is beneficial.

In P-units, on the other hand, the frequency range of be-
haviorally relevant signals is much wider. During foraging
and navigation low-frequency signals dominate [e.g. 29, 46, 69]
while in communication contexts relevant frequencies extend
up to about 400Hz [e.g. 20, 42, 43]. The P-unit system must
cover a much broader frequency range that exceeds the base-
line firing rate. In this case, intrinsic noise improves encoding
of the stimulus by escaping the entrainment of the limit-cycle
oscillation [3]. Indeed, P-unit responses are much more vari-
able than the ones of ampullary afferents (figure 1). Such
higher noise levels smear out the peak at the firing rate in the
response power spectrum and as a result the stimulus-response
coherence is not reduced at the firing rate (figure 5). The
information provided by ampullary and P-type electroreceptor
afferents were concluded to contribute equally to the multi-
modal task of prey detection [46, 64]. Increased levels of noise
in P-units may be compensated for by the larger number of

P-type electroreceptors and the integration over large receptive
fields [51, 64, 70].

In addition to the limit cycle oscillation, P-units are strongly
driven by the oscillating self-generated electric field, the EOD
(figure 1 C). The P-unit spikes lock to the EOD, but the
intrinsic noise induces stochastic skipping of EOD cycles and
this way enables encoding of small changes in EOD amplitude
[71]. Stochastic skipping is also known from auditory nerve
fibers [e.g. 60, 72] and cold receptors [63, 73, 74] and relies on
the right amount of intrinsic noise [75]. This similarity with
P-units suggests that in these systems a synchrony code is also
possible. In cold receptors, however, temperature modulations
change the frequency of the driving oscillation and thereby
change the time scale on which synchronous spikes could be
read out [63, 73, 74]. In the auditory system, on the other hand,
where auditory nerve fibers encode amplitude modulations in
similar ways as P-units, a synchrony code might indeed be
exploited by neurons in the cochlear nucleus.

Conclusions. The active and passive electrosensory subsys-
tems of weakly-electric fish are closely related but the elec-
troreceptor afferents of the two systems differ in their response
variability, population heterogeneity, and encoding properties.
This makes them the ideal model system for analyzing the ef-
fect of response variability on a synchrony code. Differences in
intrinsic noise and leakiness define whether or not a synchrony
code is established. Despite similar rates of synchronous ac-
tivity, information filtering by extracting synchronous spikes
does not work in the ampullary afferents of the passive system.
Thus, the presence of synchronous spikes is necessary but not
sufficient to establish a synchrony code.

Materials and Methods

This study includes data from in vivo recordings of P-units and
ampullary electroreceptor afferents gathered from 44 individuals of
Apteronotus leptorhynchus of either sex. Fish were obtained from a
commercial fish dealer (Aquarium Glaser, Rodgau, Germany) and
were kept in colonies of up to 20 individuals. Animals were kept
in a 12h:12h day — night cycle, water temperatures were 26 ◦C
to 27 ◦C and water conductivity was adjusted to 180 µS cm−1 to
200 µS cm−1. All experimental protocols complied with national
and European law and were approved by the Ethics Committees
of the Ludwig-Maximilians Universität München (permit no: 55.2-
1-54-2531-135-09) and the Eberhard-Karls Unversität Tübingen
(permit no: ZP 1/13).

Electrophysiology.

Surgery. Prior to surgery animals were anesthetized by submerg-
ing them into tank water containing 150mgL−1MS222 (PharmaQ,
Fordingbridge, UK) until gill movement ceased. Animals were then
respirated with a constant flow of tank water provided through
a piece of tubing introduced into their mouth. Respiration water
contained 150mgL−1 MS222 to ensure anesthesia. Those parts of
the skin that were to be cut were locally anesthetized by cutaneous
application of liquid Lidocainhydrochloride 2% (bela-pharm GmbH,
Vechta, Germany). A plastic rod was glued to the exposed bone
of the skull for fixating the head. Dorsal to the operculum the
lateral line nerve was exposed. After surgery fish were immobi-
lized by intramuscular injection of 25 µL to 50 µL of tubocurarine
(5mg mL−1 dissolved in fish saline, Sigma - Aldrich, Steinheim,
Germany). Respiration was then switched to normal tank water
and the fish was transferred to the experimental tank. Water tem-
perature in the experimental tank was adjusted to 26 ◦C. During
the experimental session local anesthesia was renewed about every
two hours by carefully applying lidocaine to the skin surrounding
the wounds.

Grewe et al. PNAS | January 13, 2017 | vol. XXX | no. XX | 7



DRAFT

Recording. Intracellular recordings of electroreceptor afferents
were done using sharp glass electrodes pulled on a P97 puller (Sutter
Instruments, Novado, CA, USA). Electrodes had resistances in the
range 40MW to 80MW when filled with 1mol L−1 KCl. Electrode
potentials were amplified (SEC-05 amplifier, npi electronics, Tamm,
Germany, operated in bridge mode) and low-pass filtered at 10 kHz
and digitized at 20 kHz (NI-PCI 6259, National Instruments, Austin,
TX, USA). Recordings and stimulation were controlled by the “efish”
plugins of RELACS (www.relacs.net).
Measurement of electric fields. The electric organ discharge
(EOD) of the fish was recorded in two ways. First, the so called
“global” measurement was obtained by measuring the fish’s head-to-
tail EOD using two carbon rods (8mm diameter) placed at the head
and the tail of the fish. The electrodes were placed iso-potential
to the stimulus electrodes not to pick up the electrical stimuli ap-
plied (see below). The second measurement of the fish’s field was
recorded using a dipole of silver wires (spaced 1 cm) which was
oriented perpendicular to the animal’s longitudinal axis and was
placed just behind the operculum close to the body of the fish.
This “local” measurement contained the fish’s own field as well
as the stimulus and is taken as an estimate of the transdermal
potential stimulating the electroreceptors. Global as well as local
measurements were differentially amplified and bandpass filtered
(DPA-2FXM; npi-electronics, 3Hz and 1.5 kHz lower and upper
cutoff, respectively). All signals were digitized at 20 kHz.
Stimulation. Electroreceptors were stimulated with band-limited
white noise stimuli with upper cutoff frequencies of 300Hz or 150Hz
for P-type and ampullary afferents, respectively. P-units were
stimulated with amplitude modulations (AM) of the fish’s own field:
the desired AM waveform was multiplied (MXS-01M, npi-electronics,
Tamm, Germany) with the global measurement of the fish’s field.
Ampullary electroreceptors were stimulated with directly applied
electrical stimuli. In both cases, the stimuli were isolated from
ground (ISO-02V, npi-electronics, Tamm, Germany) and delivered
into the recording tank via two carbon rods (30 cm length, 8mm
diameter) which were placed parallel to the longitudinal axis of the
fish at a distance of approximately 20 cm and fully submerged in the
water. Signals were calibrated relative to the local measurement (see
above) of the field by proper attenuation (ATN-01M, npi-electronics,
Tamm, Germany).

Data analysis. Spikes were detected online by RELACS using the
peak-detection algorithm proposed by Todd and Andrews [76]. Raw-
data as well as spike times were stored for subsequent offline analysis.
Data sets used in this study are publicly available in the open NIX
data format (https://github.com/g-node/nix, 77) and are publicly avail-
able (http://dx.doi.org/10.12751/g-node.5b08du). Data were analyzed
with custom routines written in C++ and Python using routines
of matplotlib [78], numpy/scipy [79], pandas [80], and seaborn
(https://web.stanford.edu/~mwaskom/software/seaborn) packages.
Basic spike train analysis. The firing rate as a function of time,
yk(t), was estimated by convolving spike responses xk(t) =

∑
i
δ(t−

tk,i) of trial k with spikes at times tk,i with a Gaussian kernel

F (t) = 1√
2πσ2

gauss

e
− t2

2σ2
gauss [1]

with σgauss the standard deviation of the kernel which was 0.5ms
if not otherwise stated. The single trial firing rate then reads

yk(t) = xk(t) ∗ F (t) =
∫ +∞

−∞
xk(t′)F (t− t′) dt′ , [2]

where ∗ denotes convolution. The Peri-stimulus-time histogram
(PSTH, y(t)) is then calculated by averaging across trials:

y(t) = 〈yk(t)〉k . [3]
Estimating the response modulation as a proxy for effective stimulus
amplitude. In response to dynamic stimuli the firing rate is mod-
ulated around an average firing rate that is close to the baseline
firing rate of the cell (figure 2 A, C). We quantified this response
modulation as the standard deviation of the PSTH over time

σmod =
√〈

(y(t)− 〈y(t)〉t)2〉
t
, [4]

where 〈·〉t denotes averaging over time. 〈y(t)〉t is the time-average
of the PSTH, i.e. the average firing rate.

The response modulation rather than the stimulus intensity
quantifies directly the effectiveness of a stimulus to drive a particular
cell (e.g. supplementary figure S1 A). For the further analyses we
therefore use the response modulation as a measure for effective
stimulus intensity, since we were interested in the effects a stimulus
has on the neuron. Three categories of weak, medium, and strong
responses were selected to separate the whole response range (zero to
maximum observed response modulation) into equally large ranges
irrespective of the number of neurons or trials contributing to each
category (supplementary figure S1 B, C).

Response variability was quantified by the standard deviation
of the single-trial firing rates yk(t), Eq. (2), across trials averaged
over time:

σpsth =
〈√〈

(yk(t)− y(t))2〉
k

〉
t

, [5]

with y(t) the PSTH, Eq. (3).

Analysis of synchronous and all-spikes response. In line with the
analysis by Middelton et al. [24] and Sharafi and colleagues [26],
we estimated the All-spikes and Synchronous spikes responses from
all pairwise combinations of repeated trials recorded in the same
neuron.

The All-spikes responses were estimated by adding pairs of
single-trial responses yk(t) and yj(t)

ya(t) = yk(t) + yj(t) . [6]

Synchronous spikes responses were estimated in two ways: (i)
From each pair of spike trains one spike train was convolved with a
box kernel of a given duration dbox (dbox = 0.25, 0.5, 1.0, 2.0ms).
Whenever a spike of the second response fell into the box a spike
in the synchronous response was noted at the respective average
spike time in response 1 and 2 (supplementary figure S2 A) [24]. (ii)
Single trial responses yk(t) were computed according to Eq. (2), with
the standard deviation σgauss = dbox

√
12 of the Gaussian kernels

Eq. (1) matching the standard deviation of the box kernels. Pairs
of single-trial responses yk(t) and yj(t) were point-wise multiplied
to estimate the synchronous response

ys(t) = αyj(t)yk(t) , α = 2
√
π σgauss . [7]

The synchronous response is zero for times in which the kernels
do not overlap and positive in overlapping epochs, indicating syn-
chronous activity (figure 3 A, supplementary figure S2 B). The
normalization factor α ensures that perfectly overlapping spikes
result in a Gaussian with integral one [26].

The mean response amplitudes (comparable to an average firing
rate) of both methods were very similar (supplementary figure S2 C)
and all further analyses yielded similar results irrespective of the
applied measure (not shown). For the rest of this work we show only
results from the multiplication method (supplementary figure S2 B).

Spectral analysis. To analyze the encoding of electrosensory stim-
uli in a frequency-resolved manner we computed the stimulus-
response coherence [e.g. 81]

Csr(f) = |Ssr(f)|2
Srr(f)Sss(f)

[8]

between the stimulus s(t) and the neural response r(t), i.e. single
trial spike trains yk(t) or synchronous responses ys(t). Power and
cross-spectra were defined in terms of the Fourier transform X(f) =∫ T

0 x(t)e2πift dt of a time series x(t) by the formulas

Ssr(f) = 〈S∗R〉/T, Srr(f) = 〈R∗R〉/T, Sss(f) = 〈S∗S〉/T , [9]

where ∗ denotes the complex conjugate and 〈·〉 indicates averaging
across segments. To estimate spectra and to determine the coher-
ence, stimulus and responses were cut into segments of 8192 data
points (=̂0.4096 s) length and a Hanning window of the same length
was applied to each segment. Segments had an overlap of 50%. As
the response time series the single trial PSTH was taken (Eq. (2),
spike train convolved with a Gaussian kernel, σ = 0.5ms).

From the coherence spectra a lower bound estimate of the mutual
information between stimulus and response was estimated according
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to:

MI = −
∫ fc

0
log2 (1− Csr(f)) df [10]

with fc the cutoff frequency of the frequency band for which the
mutual information is estimated.
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Response modulation. The response modulation rather than
the stimulus contrast, its strength relative to the fish’s own
field, was taken as a proxy for the stimulus intensity. To
which extent a stimulus drives a particular neuron varies
strongly. The observed response modulations at different
stimulus contrasts strongly overlap (figure 1 A). For several
comparisons the cells were classified according to the response
modulation (figure 1 B, C).

Detection of synchronous spikes. Synchronous spikes were de-
tected by a convolution of the individual spike trains with
Gaussian kernels and subsequent multiplication of the re-
sponses [26] (figure 2 B). This approach is different from the
one chosen by Middleton et al. [24] (figure 2 A. Both ap-
proaches, however, give similar firing rates in the synchronous
responses for both cell types (figure 2 C).

Existence of synchrony code does not depend on population size.
In addition to the synchronous-spikes response for pairs of
spike responses we estimated the synchronous responses for
situations in which spikes in m-out-of-n trials have to be
synchronous[39]. Each spike train of the population is con-
volved with a box kernel of a certain width ∆ (height 1) and
the resulting traces are summed up. The synchronous re-
sponse is then estimated by simply thresholding the summed
spike trains and normalizing with the width of the box ker-
nel. The selection of the threshold defines how many neurons
of the population have to fire in synchrony to evoke a syn-
chronous response. In our analysis we created 50 unique
populations of n = 10 spike trains of each neuron by ran-
domly combining selected trials. For each population we
estimated the synchronous response when m out of 10 neu-
rons were firing synchronously in a time window of width
∆. Chosen values were m ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} and
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Fig. 1. Relation of response modulation and stimulus contrast. A Neuronal
responses of ampullary and P-unit electroreceptors were evoked by stimuli of four
different contrasts, i.e standard deviations of the random AM stimuli relative to the
EOD amplitude measured by the local electrode. Violin plots show the distributions
of the resulting response modulations for the different stimulus contrasts for both
cell types. The response modulation, Eq. (4), is the standard deviation of the PSTH
over time. High modulations indicate a high gain with which the cell responds to
the stimulus. Within the violins, a boxplot indicates median, interquartile range,
10 and 90 % percentiles. B, C Distributions of observed response modulations
for ampullary electroreceptor afferents and P-units, respectively. The full range of
response modulations is divided into three categories (weak, medium and strong
responses, vertical dashed lines). Since many cells were stimulated with stimuli of
different contrasts individual cells can contribute to more than one category.

∆ ∈ {0.25, 0.5, 1.0, 2.0}ms).
Pyramidal neurons in electrosensory lateral line lobe in

the hindbrain (ELL) receive information from more than two
electroreceptor afferents [e.g. 51]. In the following analysis we
therefore enlarged the population size to n = 10 by randomly
selecting 10 trials recorded in any recorded neuron. For a
synchrony criterion we required spikes from m out of n tri-
als to occur simultaneously within a given time window (see
methods). Requiring more spikes to be synchronous makes
the synchrony criterion harder. Only if the stimulus is po-
tent enough to drive the population sufficiently strong, a
synchronous event is observed. Hence, the firing rate of the
synchronous response of the population drops with increasing
m. Analogous to the results shown above (figure 4 B) the
position of the peak coherence was estimated relative to the
baseline firing frequency. For ampullary cells the required
number of synchronous spikes and the response modulation do
not have a pronounced effect on the position of the coherence
peak; the surface plot is almost flat (figure 3 A). In P-units,
however, increasing m shifts the best coding frequency (peak
of the stimulus-response coherence) closer towards the baseline
firing rate, resulting in a stronger synchrony code (figure 3
B). For weak responses, i.e. weak effective stimuli, the shift is
larger than for strong responses, irrespective of the number of
required synchronous spikes (compare to figure 4 B).
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Fig. 2. Computation of the synchronous response of pairs of responses. A
Binning method: The spikes of response 1 (solid vertical lines indicate the occurrence
of each spike) were convolved with a box kernel. If a spike of response 2 fell into the
box of the first response a spike in the synchronous response (bottom trace) was noted
between the spikes of response 1 and response 2. B Multiplication method: Spikes of
both responses were convolved with Gaussian kernels. The synchronous response
is obtained by multiplying both responses. C Comparison of the mean synchronous
response (comparable to the average rate of synchronous spikes) estimated with both
methods. Data show results from both type of electroreceptors analyzed in this study.
Dashed line is the bisecting line. ’r’ values in the figure legend represent Pearson’s
correlation coefficient.
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Fig. 3. Synchrony code in homogeneous populations of 10 neurons. Shown is
the position of the coherence peak of synchronous spikes relative to baseline rate as a
function of response modulation and numberm of simultaneously synchronous spikes.
The peak of the stimulus-response coherence was estimated from synchronous
responses where spikes fromm out of 10 trials were required to occur simultaneously
within 2 ms (see methods). The position of the coherence peak was then normalized
to the baseline firing rate. Dots show data points for each cell which is an average over
50 artificial populations constructed by randomly selecting 10 trials. The surface plot
shows the average value in 25 Hz bins of the response modulation. A Independent
of response modulation and number of synchronous spikes the coherence peak
of ampullary afferents is only slightly shifted towards the baseline firing rate. B In
P-unit electroreceptors a stronger synchrony criterion (higher m) results in a stronger
shift of the coherence peak towards the baseline firing rate. Similar to the case of
synchronous spikes in two trials (fig. 4 B) the synchrony code is more pronounced at
lower response modulations.

Spectral effects can be explained by combinations of leak and noise
in leaky-integrate-and-fire neurons. In order to better under-
stand the spectral statistics of ampullary cells and P-units
(see figure 5) and the efficiency of a synchrony code for these
cell types, we simulated pairs of leaky integrate-and-fire (LIF)
neurons obeying the simple voltage dynamics

v̇k = −α vk + µ+ s(t) +
√

2Di ξk(t) , k = 1, 2 , [1]

complemented by the fire-and-reset rule: Whenever the volt-
age crosses the threshold vt = 1, a spike is generated and
the voltage is reset to the value vr = 0. In eq.[1], µ is the

constant base current, {ξk}k=1,2 are independent Gaussian
white noise processes with zero mean and correlation function
〈ξk(t)ξk′ (t′)〉 = δk,k′δ(t − t′), and Di is the intrinsic noise
intensity. The parameter α can be regarded as setting the
leak conductance of the membrane. The common stimulus s(t)
is modeled by broad-band Gaussian white noise with cutoff
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Fig. 4. Spectral analysis of model neuron. A—C Cross-, power and coherence
spectra of LIF neuron Eq. (1) with Di = 0.02, α = 1.0 and fc = 3.0. D—F Same
analysis for Di = 0.002, α = 0.1 and fc = 1.3. In each panel the respective
spectra of the single-trials (solid lines) and the synchronous responses (broken lines)
are shown for two different stimulus intensities Ds = 0.01 (’weak’) and Ds = 0.03
(’strong’). Cross- and power spectra are normalized to their average. Remaining
parameters: µ = 1.2, width of box-kernel dbox was chosen, such that the product
between baseline firing rate and dbox equals 0.2. Parameters were selected to
qualitatively resemble experimental results in fig. 5.

frequency fc and noise intensity Ds, i.e. its power spectrum
is given by Sss(f) = 2Ds for f ≤ fc (and is zero for f > fc).

Figure 4 shows that we can find parameters such that
the spectra of the simulated model neurons look similar to
the ones of the example cells presented in figure 5. This
similarity is achieved by changing only two parameters: the
leak parameter α and the intrinsic noise intensity Di turn
out to be the key parameters to mimic the different spectral
statistics of the P-units and ampullary cells. An ampullary-
cell-like behavior is obtained for low intrinsic noise intensity
and a small leak term, resulting in a low coefficient of variation
and a comparatively flat cross-spectrum (see right column in
figure 4: Di = 0.002, α = 0.1 → CV = 0.06). A dynamics
similar to the one observed in P-units is obtained by setting
the intrinsic noise and leak to higher values, leading to a higher
CV and a peaked cross-spectrum (see left column in figure 4:
Di = 0.02, α = 1→ CV = 0.31).
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