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Sensory electrophysiology

Electrosensory systems of Auditory system of
weakly eletric fish grasshopper and crickets

How are sensory stimuli processed by sensory systems?

Jan Benda, LMU



Content

7N
Ny T

v
% read voltage.
'

Closed-loop experiments

Dynamic clamp

RELACS — closed-loop software

Metadata — extending data-lifetime

Jan Benda, LMU



Closed-loop experiments

7 RN
N T




“Traditional” experiments

1. A set of stimuli and a more or less fixed
experimental protocol are prepared
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“Traditional” experiments

1. A set of stimuli and a more or less fixed
experimental protocol are prepared

2. The recordings are done on a few cells
(> one week of experimental work)

e the raw voltage trace is the only feedback

e changes during the running experiment often involve
manual manipulations
= precious recording time is wasted

The data are analyzed offline
The stimuli and the protocol are modified

A new set of recordings is made

o o kW

After several iterations a paper is written

Jan Benda, LMU



Closed-loop experiments

1. Present a
stimulus

2. Record the
response

A

M,
N

Input:
Stimulus

Output:
Next stimulus

3. Immediately analyze and
visualize the data

4. Generate the next
stimulus

Output:
Neuronal response

W
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Neuronal response
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Simple closed-loop experiments

e Online visualization of processed data:
— General infos, e.g. quality of spike detection,
sensitivity of the cell, temperature,
condition of animal, ...

— Specific results, e.g. spike raster, firing rates,
spike-triggered averages, ...

= Speeds up manual (“traditional”) closed-loop
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Simple closed-loop experiments

e Online visualization of processed data:
— General infos, e.g. quality of spike detection,
sensitivity of the cell, temperature,
condition of animal, ...
— Specific results, e.g. spike raster, firing rates,
spike-triggered averages, ...

= Speeds up manual (“traditional”) closed-loop

Set stimuli relative to the neuron’s dynamic range

Automatically control motorized electrodes
(great for dual unit recordings!)

Optimize tuning curve measurements

Jan Benda, LMU



Example: tuning curve measurement
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Advanced closed-loop experiments

New experimental designs are possible:

Optimal search for a neuron’s receptive field.
Search for stimuli that drive a neuron in an
optimal” way.

Find set’s of stimulus parameter that result in the
same response (iso-response method).

Benda et al. (2007): "From response to stimulus: adaptive sampling in sen-
sory physiology.” Curr. Opin. Neurobiol. 17: 430-436.

Jan Benda, LMU



Example: optimal stimulus ensembles
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Machens et al. (2005) Neuron 17: 47-56.
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Dynamic clamp

—> read voltage

compute
model
I=f(V,t)

— write current




Dynamic clamp

—>» read voltage

compute
model
I=f(V,t)

— write current

Current-clamp, with the current I computed as a function of the
measured membrane potential V.

Closed-loop at a per sample time scale (tens of kHz).

Jan Benda, LMU



Artificial conductances

I=g(t)-(V—E)

46 my- Wﬂhﬂrh\nm‘_mnﬂ {ﬂﬂrdmwhﬂr -ﬂhﬂhﬂ%_m Mﬂﬂfﬂmmﬂ

69 mV— 'ﬁh mﬂwﬂrm’lﬂw Pﬂrm}ﬁﬂf WWW “”‘”'W\hWTWﬂr

79 mv— ﬂpmwmﬁmmmhrmwmrmw WMWWWWWW
1

_J1o mv 1
; = 4s
30 s 01 mM GABA

B

30 s GABA Simulation

Andrew A. Sharp, Michael B. ONeil, L. F. Abbott, & Eve Marder (1993) J Neurophysiol
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Artificial conductances

1=g(1)-(V~E)
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Andrew A. Sharp, Michael B. ONeil, L. F. Abbott, & Eve Marder (1993) J Neurophysiol
e Synaptic conductances

e \oltage-gated conductances

Jan Benda, LMU



Artificial networks
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Theoden I. Netoff, Matthew I. Banks, Alan D. Dorval, Corey D. Acker, Julie S. Haas,
Nancy Kopell, & John A. White (2005) J Neurophysiol
o Artificially couple real neurons

e Couple with simulated neurons

Jan Benda, LMU



Dynamic clamp: artificial conductances

the electrode.

— Use high sampling rates!

—> read voltage

compute
mode/
1=f(V,t)

— write current

+ Fine tuned control of conductances

— Conductances are only “inserted” at

=

Jan Benda, LMU



relacs

... enjoy your recordings

S

www.relacs.net



RELACS ... enjoy your recordings

Relaxed Electrophysiological data Acquisition, Control, and Stimulation
RELACS is a framework for closed-loop experiments

X 1 1/24 ox

Ele Plugins Deuces Detectors/Fiters RePros Macros View Help

> FField (F1) ° Stimulus (F2)

AM; OU-nolse20H71276223405 . Intensiy: 55.0 8 SPL
2 6.0 dB, Loop 19 of 20

= currently 13 scientific publications based on
RELACS data in Neuron, J Neurosci, PLoS Biol,
Nat Neurosci, J Neurophysiol, etc.

Jan Benda, LMU



Modular design

RELACS core with flexible C++ Plugins for

hardware abstraction

data pre-processsing (filter, spike detectors)
experimental protocols

passive controls
model

Jan Benda, LMU



Hardware independent protocols

RELACS integrates all hardware components.

Experimental protocols for RELACS

are implemented independently of

specific hardware

can be used on all the different experimental
setups in your lab without any modifications
can be shared with other labs

Jan Benda, LMU



Free and open source software

RELACS is open source and free software distributed under the
GNU General Public License (GPL).

e No hassle with licenses of commercial software.

e Add whatever new feature you need directly to the
program.

e Share the program and your specific experimental
protocols with your collaborators.

e Know what the data-analysis algorithms are doing!

Jan Benda, LMU



Talking about data

an extensible framework
for metadata exchange




The data-chain

Data Recording Data Management
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1 Nl
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The data-chain

Data Recording Data Management
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www.g-node.de

The data-chain
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German neuroinformatics node
www.g-node.de

e All data transfer requires talking about data.

e How to exchange metadata?

Jan Benda, LMU


www.g-node.de

Metadata

e is “data about data”.
e describe recording conditions.
e essential for data analysis, management, and sharing.

stimulusType = white noise

Jan Benda, LMU



Metadata

e is “data about data”.
e describe recording conditions.
e essential for data analysis, management, and sharing.

name value
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The metadata problem

e s “data about data”.
e describe recording conditions.
e essential for data analysis, management, and sharing.

name value

e What name to choose?
e What does it mean?
e How to organize metadata?

Jan Benda, LMU



odML — open metadata markup language

Structure:
name
value
error (optional)
P"°Pe"ty unit (optional)
type (optional)
description (optional)
( )
name
description(optional)
Section 1
odML -
metadata
[Section n ]
\ .

Implemented as the odML XML Schema

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml . genda Lmu


www.g-node.org/odml

odML — open metadata markup language

Terminologies: names & definitions

HardwareSettings:
Amplifier:
name type description
Gain float ~ The amplifier gain.

HighpassCutoff  float The cutoff frequency of the amplifier’s
highpass filter. Given in Hz.

LowpassCutoff  float The cutoff frequency of the amplifier’s
lowpass filter. Given in Hz.

Mode string The amplifier mode. E.g. Bridge, CC,
VC etc.

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml . genda Lmu


www.g-node.org/odml

How to use odML?

1. Assemble properties:
e |f you find an appropriate property in the
odML-terminologies, use it!
e Ignore all properties that do not match.
e Add your own properties that are not yet in the
terminology, if possible with a description.

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml . genda Lmu
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How to use odML?

1. Assemble properties:

e |f you find an appropriate property in the
odML-terminologies, use it!

e Ignore all properties that do not match.

e Add your own properties that are not yet in the
terminology, if possible with a description.

2. Write them into an odML XML file
3. Transfer them to an analysis or database program

= odML flexibility: all available metadata can be immediately
stored in a file

= odML standard: The G-Node electrophysiology database
is based on odML ww.g-node.org

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml . genda Lmu
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The data life-cycle

The Data Lifecycle
~
scarcely documented
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e Meta information tends to vanish with time

e Thus, re-using of old data is a tedious business.
e Data should be annotated as early as possible

(preferentially at the time of acquisition, e.g. with RELACS)

Jan Benda, LMU



The data life-cycle

The Data Lifecycle

~
scar:ely documented
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e odML provides a simple and flexible standard

e Well annotated data can be found and reused easily

= Your data deserves it!

Jan Benda, LMU



Summary

7 %ﬁ%ﬁ% Closed-loop experiments
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Novel experimental designs

N = 7 Dynamic clamp
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