Closed-loop recordings in sensory electrophysiology

- how software can improve experiments -

Jan Benda

Biozentrum Martinsried Ludwig-Maximilians Universität München

Sensory electrophysiology

Electrosensory systems of weakly eletric fish

Auditory system of grasshopper and crickets

How are sensory stimuli processed by sensory systems?

Content

Closed-loop experiments

Dynamic clamp

RELACS — closed-loop software

Metadata — extending data-lifetime

Closed-loop experiments

1. A set of stimuli and a more or less fixed experimental protocol are prepared

- 1. A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells
 - (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations

- 1. A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells
 - (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations

 \Rightarrow precious recording time is wasted

3. The data are analyzed offline

- 1. A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells
 - (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations

- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified

- 1. A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells
 - (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations

- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified
- 5. A new set of recordings is made

- 1. A set of stimuli and a more or less fixed experimental protocol are prepared
- 2. The recordings are done on a few cells
 - (> one week of experimental work)
 - the raw voltage trace is the only feedback
 - changes during the running experiment often involve manual manipulations

- 3. The data are analyzed offline
- 4. The stimuli and the protocol are modified
- 5. A new set of recordings is made
- 6. After several iterations a paper is written

Closed-loop experiments

- 1. Present a stimulus
- 2. Record the response

- **3.** Immediately analyze and visualize the data
- 4. Generate the next stimulus

Simple closed-loop experiments

- Online visualization of processed data:
 - General infos, e.g. quality of spike detection, sensitivity of the cell, temperature, condition of animal, ...
 - Specific results, e.g. spike raster, firing rates, spike-triggered averages, ...
 - \Rightarrow Speeds up manual ("traditional") closed-loop

Simple closed-loop experiments

- Online visualization of processed data:
 - General infos, e.g. quality of spike detection, sensitivity of the cell, temperature, condition of animal, ...
 - Specific results, e.g. spike raster, firing rates, spike-triggered averages, ...
 - \Rightarrow Speeds up manual ("traditional") closed-loop
- Set stimuli relative to the neuron's dynamic range
- Automatically control motorized electrodes (great for dual unit recordings!)
- Optimize tuning curve measurements

Traditional:

either: fast \rightarrow low resolution

either: fast \rightarrow low resolution or: high resolution \rightarrow slow

either: fast \rightarrow low resolution or: high resolution \rightarrow slow

Closed loop:

 start with low resolution

Closed loop:

either: fast \rightarrow low resolution or: high resolution \rightarrow slow

- start with low resolution
- 2. increase resolution where necessary!

Closed loop:

either: fast \rightarrow low resolution or: high resolution \rightarrow slow

- start with low resolution
- 2. increase resolution where necessary!
- **3.** further increase resolution

Closed loop:

either: fast \rightarrow low resolution or: high resolution \rightarrow slow

- start with low resolution
- 2. increase resolution where necessary!
- **3.** further increase resolution

Advanced closed-loop experiments

New experimental designs are possible:

- Optimal search for a neuron's receptive field.
- Search for stimuli that drive a neuron in an "optimal" way.
- Find set's of stimulus parameter that result in the same response (iso-response method).

• ...

Benda et al. (2007): "From response to stimulus: adaptive sampling in sensory physiology." *Curr. Opin. Neurobiol.* **17**: 430–436.

Example: optimal stimulus ensembles

Machens et al. (2005) Neuron 17: 47-56.

Dynamic clamp

Dynamic clamp

Current-clamp, with the current I computed as a function of the measured membrane potential V.

Closed-loop at a per sample time scale (tens of kHz).

Artificial conductances

Andrew A. Sharp, Michael B. ONeil, L. F. Abbott, & Eve Marder (1993) J Neurophysiol

Artificial conductances

Andrew A. Sharp, Michael B. ONeil, L. F. Abbott, & Eve Marder (1993) J Neurophysiol

- Synaptic conductances
- Voltage-gated conductances

Theoden I. Netoff, Matthew I. Banks, Alan D. Dorval, Corey D. Acker, Julie S. Haas, Nancy Kopell, & John A. White (2005) *J Neurophysiol*

- Artificially couple real neurons
- Couple with simulated neurons

Dynamic clamp: artificial conductances

- + Fine tuned control of conductances
- Use high sampling rates!
- Conductances are only "inserted" at the electrode.

... enjoy your recordings

RELACS

... enjoy your recordings

Relaxed Electrophysiological data Acquisition, Control, and Stimulation *RELACS* is a framework for closed-loop experiments

⇒ currently 13 scientific publications based on RELACS data in Neuron, J Neurosci, PLoS Biol, Nat Neurosci, J Neurophysiol, etc.

Modular design

RELACS core with flexible C++ Plugins for

- hardware abstraction
- data pre-processing (filter, spike detectors)
- experimental protocols

Hardware independent protocols

RELACS integrates all hardware components.

Experimental protocols for RELACS

- are implemented independently of specific hardware
- can be used on all the different experimental setups in your lab without any modifications
- can be shared with other labs

Free and open source software

RELACS is open source and free software distributed under the GNU General Public License (GPL).

- No hassle with licenses of commercial software.
- Add whatever new feature you need directly to the program.
- Share the program and your specific experimental protocols with your collaborators.
- Know what the data-analysis algorithms are doing!

Talking about data

an extensible framework for metadata exchange

The data-chain

The data-chain

German neuroinformatics node www.g-node.de

The data-chain

- All data transfer requires talking about data.
- How to exchange metadata?

Metadata

- is "data about data".
- describe recording conditions.
- essential for data analysis, management, and sharing.

stimulusType = white noise

Metadata

- is "data about data".
- describe recording conditions.
- essential for data analysis, management, and sharing.

The metadata problem

- is "data about data".
- describe recording conditions.
- essential for data analysis, management, and sharing.

- What name to choose?
- What does it mean?
- How to organize metadata?

odML — open metadata markup language

Structure:

Implemented as the odML XML Schema

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml Ja

odML — open metadata markup language

Terminologies: names & definitions

HardwareSettings:

Amplifier:

name	type	description
Gain	float	The amplifier gain.
HighpassCutoff	float	The cutoff frequency of the amplifier's highpass filter. Given in Hz.
LowpassCutoff	float	The cutoff frequency of the amplifier's lowpass filter. Given in Hz.
Mode	string	The amplifier mode. E.g. Bridge, CC, VC etc.

Grewe, Wachtler, Benda (2010) *submitted*. www.g-node.org/odml Ja

- 1. Assemble properties:
 - If you find an appropriate property in the odML-terminologies, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in the terminology, if possible with a description.

- 1. Assemble properties:
 - If you find an appropriate property in the odML-terminologies, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in the terminology, if possible with a description.
- 2. Write them into an odML XML file

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml Jan Benda, LMU

- 1. Assemble properties:
 - If you find an appropriate property in the odML-terminologies, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in the terminology, if possible with a description.
- 2. Write them into an odML XML file
- 3. Transfer them to an analysis or database program

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml Jan Benda. LMU

- 1. Assemble properties:
 - If you find an appropriate property in the odML-terminologies, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in the terminology, if possible with a description.
- 2. Write them into an odML XML file
- 3. Transfer them to an analysis or database program
- ⇒ odML flexibility: all available metadata can be immediately stored in a file

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml Jan Benda. LMU

- 1. Assemble properties:
 - If you find an appropriate property in the odML-terminologies, use it!
 - Ignore all properties that do not match.
 - Add your own properties that are not yet in the terminology, if possible with a description.
- 2. Write them into an odML XML file
- 3. Transfer them to an analysis or database program
- ⇒ odML flexibility: all available metadata can be immediately stored in a file
- ⇒ odML standard: The G-Node electrophysiology database is based on odML ww.g-node.org

Grewe, Wachtler, Benda (2010) submitted. www.g-node.org/odml Jan Benda. LMU

The data life-cycle

The Data Lifecycle

- Meta information tends to vanish with time.
- Thus, re-using of old data is a tedious business.
- Data should be annotated as early as possible (preferentially at the time of acquisition, e.g. with RELACS).

The data life-cycle

The Data Lifecycle

- odML provides a simple and flexible standard
- · Well annotated data can be found and reused easily
- \Rightarrow Your data deserves it!

Summary

Closed-loop experiments

Novel experimental designs

Dynamic clamp

Artificial conductances and hybrid networks

- C. Boucsein, Freiburg

- R. Polder, npi electronic, Tamm

RELACS www.relacs.net

Software platform for closed-loop and dynamic clamp experiments

Metadata www.g-node.org/odml

A standard for sharing data

- J. Grewe, LMU Munich

— T. Wachtler, G-Node, LMU Munich

Summary

Closed-loop experiments

Novel experimental designs

Dynamic clamp

Artificial conductances and hybrid networks

- C. Boucsein, Freiburg

- R. Polder, npi electronic, Tamm

RELACS www.relacs.net

Software platform for closed-loop and dynamic clamp experiments

Metadata www.g-node.org/odml

A standard for sharing data

- J. Grewe, LMU Munich

— T. Wachtler, G-Node, LMU Munich